AVR Instruction Set

This section describes all instructions for the 8-bit AVR in detail. For a specific device please refer to the specific Instruction Set Summary in the hardware description.

Addressing modes are described in detail in the hardware description for each device.

8-Bit **AVR**

Instruction Set

Instruction Set Nomenclature:

Status Register (SREG):

- SREG: Status register
- C: Carry flag in status register
- Z: Zero flag in status register
- N: Negative flag in status register
- V: Twos complement overflow indicator
- S: $N \oplus V$, For signed tests
- H: Half Carry flag in the status register
- T: Transfer bit used by BLD and BST instructions
- I: Global interrupt enable/disable flag

Registers and operands:

- Rd: Destination (and source) register in the register file
- Rr: Source register in the register file
- R: Result after instruction is executed
- K: Constant literal or byte data (8 bit)
- k: Constant address data for program counter
- b: Bit in the register file or I/O register (3 bit)
- s: Bit in the status register (3 bit)

- X,Y,Z: Indirect address register (X=R27:R26, Y=R29:R28 and Z=R31:R30)
- P: I/O port address
- q: Displacement for direct addressing (6 bit)

I/O Registers

RAMPX, RAMPY, RAMPZ: Registers concatenated with the X, Y and Z registers enabling indirect addressing of the whole SRAM area on MCUs with more than 64K bytes SRAM.

Stack:

STACK:Stack for return address and pushed registers SP: Stack Pointer to STACK

Opcode:

X: Don't care

Flags:

- \Leftrightarrow : Flag affected by instruction
- **0**: Flag cleared by instruction
- **1**: Flag set by instruction
- -: Flag not affected by instruction

Condition	al Branch Sun	innai y				
Test	Boolean	Mnemonic	Complementary	Boolean	Mnemonic	Comment
Rd > Rr	$Z \bullet (N \oplus V) = 0$	BRLT*	Rd ≤ Rr	Z+(N ⊕ V) = 1	BRGE*	Signed
Rd≥Rr	$(N \oplus V) = 0$	BRGE	Rd < Rr	(N ⊕ V) = 1	BRLT	Signed
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Signed
Rd≤Rr	Z+(N ⊕ V) = 1	BRGE*	Rd > Rr	$Z \bullet (N \oplus V) = 0$	BRLT*	Signed
Rd < Rr	(N ⊕ V) = 1	BRLT	Rd≥Rr	(N ⊕ V) = 0	BRGE	Signed
Rd > Rr	C + Z = 0	BRLO*	Rd ≤ Rr	C + Z = 1	BRSH*	Unsigned
$Rd \ge Rr$	C = 0	BRSH/BRCC	Rd < Rr	C = 1	BRLO/BRCS	Unsigned
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Unsigned
Rd≤Rr	C + Z = 1	BRSH*	Rd > Rr	C + Z = 0	BRLO*	Unsigned
Rd < Rr	C = 1	BRLO/BRCS	Rd≥Rr	C = 0	BRSH/BRCC	Unsigned
Carry	C = 1	BRCS	No carry	C = 0	BRCC	Simple
Negative	N = 1	BRMI	Positive	N = 0	BRPL	Simple
Overflow	V = 1	BRVS	No overflow	V = 0	BRVC	Simple
Zero	Z = 1	BREQ	Not zero	Z = 0	BRNE	Simple

* Interchange Rd and Rr in the operation before the test. i.e. CP Rd, $Rr \rightarrow CP Rr$, Rd

Conditional Branch Summary

Complete Instruction Set Summary

Mnem- onics	Operands	Description O	peration	Flaos	#Clock Note
ARITHM	ETIC AND LC	GIC INSTRUCTIONS			
ADD	Rd. Rr	Add without Carrv	$Rd \gets Rd + Rr$	Z.C.N.V.H	1
ADC	Rd. Rr	Add with Carrv	$Rd \gets Rd + Rr + C$	Z.C.N.V.H	1
ADIW	Rd. K	Add Immediate to Word	$Rd\text{+1:}Rd \gets Rd\text{+1:}Rd\text{+}K$	Z.C.N.V	2
SUB	Rd. Rr	Subtract without Carry	$Rd \gets Rd \textbf{-} Rr$	Z.C.N.V.H	1
SUBI	Rd. K	Subtract Immediate	$Rd \gets Rd \textbf{-} K$	Z.C.N.V.H	1
SBC	Rd. Rr	Subtract with Carrv	$Rd \gets Rd \text{ - } Rr \text{ - } C$	Z.C.N.V.H	1
SBCI	Rd. K	Subtract Immediate with Carrv	$Rd \gets Rd \textbf{-} K \textbf{-} C$	Z.C.N.V.H	1
SBIW	Rd. K	Subtract Immediate from Word	$Rd\text{+}1:Rd \leftarrow Rd\text{+}1:Rd\text{-}K$	Z.C.N.V	2
AND	Rd. Rr	Logical AND	$Rd \gets Rd \bullet Rr$	Z.N.V	1
ANDI	Rd. K	Logical AND with Immediate	$Rd \gets Rd \bullet K$	Z.N.V	1
OR	Rd. Rr	Logical OR	$Rd \gets Rd \lor Rr$	Z.N.V	1
ORI	Rd. K	Logical OR with Immediate	$Rd \gets Rd \lor K$	Z.N.V	1
EOR	Rd. Rr	Exclusive OR	$Rd \gets Rd \oplus Rr$	Z.N.V	1
СОМ	Rd	One's Complement	$Rd \gets \$FF \textbf{-} Rd$	Z.C.N.V	1
NEG	Rd	Two's Complement	$Rd \leftarrow \$00 - Rd$	Z.C.N.V.H	1
SBR	Rd.K	Set Bit(s) in Reaister	$Rd \gets Rd \lor K$	Z.N.V	1
CBR	Rd.K	Clear Bit(s) in Register	$Rd \gets Rd \bullet (\$FFh - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \gets Rd + 1$	Z.N.V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd$ - 1	Z.N.V	1
TST	Rd	Test for Zero or Minus	$Rd \gets Rd \bullet Rd$	Z.N.V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z.N.V	1
SER	Rd	Set Reaister	$Rd \gets \$FF$	None	1
MUL	Rd.Rr	Multiply Unsigned	$R1, R0 \leftarrow Rd \times Rr$	С	2 1

 $\sqrt{}$) Not available in base-line microcontrollers

(continued)

Complete Instruction Set Summary (continued)

Mnem- onics	Operands	Description O	peration	Flaos	#Clock Note
BRANCH	INSTRUCTI	ONS		1	
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
JMP	k	Jump	$PC \leftarrow k$	None	3
RCALL	k	Relative Call Subroutine	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL	k	Call Subroutine	$PC \leftarrow k$	None	4
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd.Rr	Compare. Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2
СР	Rd.Rr	Compare Rd - Rr		Z.C.N.V.H.	1
CPC	Rd.Rr	Compare with Carrv	Rd - Rr - C	Z.C.N.V.H	1
CPI	Rd.K	Compare with Immediate	Rd - K	Z.C.N.V.H	1
SBRC	Rr. b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC \leftarrow PC + 2 or 3	None	1/2
SBRS	Rr. b	Skip if Bit in Register Set	if (Rr(b)=1) PC \leftarrow PC + 2 or 3	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if(I/O(P,b)=0) PC \leftarrow PC + 2 or 3	None	2/3
SBIS	P, b	Skip if Bit in I/O Register Set	If(I/O(P,b)=1) PC← PC + 2 or 3	None	2/3
BRBS	s. k	Branch if Status Flag Set	if (SREG(s) = 1) then $PC \leftarrow PC+k + 1$	None	1/2
BRBC	s. k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC+k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carrv Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carrv Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal. Signed	if (N \oplus V= 0) then PC \leftarrow PC+ k + 1	None	1/2
BRLT	k	Branch if Less Than. Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2

(continued)

Complete	Instruction	Set Summary	(continued)
0011101010		oot ourmany	

Mnem- onics	Operands	Description O	peration	Flaos	#Clock Note
DATA TR	RANSFER IN	STRUCTIONS			
MOV	Rd. Rr	Copy Register	$Rd \leftarrow Rr$	None	1
LDI	Rd. K	Load Immediate	$Rd \leftarrow K$	None	1
LDS	Rd. k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	3
LD	Rd. X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd. X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	RdX	Load Indirect and Pre-Decrement	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd. Y	Load Indirect	$Rd \gets (Y)$	None	2
LD	Rd. Y+	Load Indirect and Post-Increment	$Rd \gets (Y), Y \gets Y + 1$	None	2
LD	RdY	Load Indirect and Pre-Decrement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd.Y+a	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd. Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd. Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	RdZ	Load Indirect and Pre-Decrement	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd. Z+a	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
STS	k, Rr	Store Direct to SRAM	$Rd \leftarrow (k)$	None	3
ST	X. Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+. Rr	Store Indirect and Post-Increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	-X. Rr	Store Indirect and Pre-Decrement	$X \leftarrow X - 1$, (X) $\leftarrow Rr$	None	2
ST	Y. Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+. Rr	Store Indirect and Post-Increment	$(Y) \gets Rr, Y \gets Y + 1$	None	2
ST	-Y. Rr	Store Indirect and Pre-Decrement	$Y \leftarrow Y - 1$, (Y) $\leftarrow Rr$	None	2
STD	Y+a.Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z. Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+. Rr	Store Indirect and Post-Increment	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z. Rr	Store Indirect and Pre-Decrement	$Z \leftarrow Z - 1$, (Z) $\leftarrow Rr$	None	2
STD	Z+a.Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
IN	Rd, P	In Port	$Rd \gets P$	None	1
OUT	P. Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack	$STACK \gets Rr$	None	2
POP	Rd	Pop Register from Stack	$Rd \gets STACK$	None	2

(continued)

Complete Instruction Set Summary (continued)

Mnem- onics	Operands	Description O	peration	Flaos	#Clock Note
BIT AND	BIT-TEST IN	STRUCTIONS		•	<u>.</u>
LSL	Rd	Logical Shift Left	$Rd(n+1)\leftarrow Rd(n), Rd(0)\leftarrow 0, C\leftarrow Rd(7)$	Z.C.N.V.H	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0, C \leftarrow Rd(0)$	Z.C.N.V	1
ROL	Rd	Rotate Left Through Carrv	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z.C.N.V.H	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z.C.N.V	1
ASR	Rd	Arithmetic Shift Riaht	$Rd(n) \leftarrow Rd(n+1), n=06$	Z.C.N.V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftrightarrow Rd(74)$	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
SBI	P. b	Set Bit in I/O Register	I/O(P, b) ← 1	None	2
CBI	P. b	Clear Bit in I/O Register	I/O(P, b) ← 0	None	2
BST	Rr. b	Bit Store from Reaister to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd. b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carrv	C ← 1	С	1
CLC		Clear Carrv	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	Ν	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	I	1
SES		Set Sianed Test Flaa	S ← 1	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
SEV		Set Two's Complement Overflow	$V \leftarrow 1$	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carrv Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	$H \leftarrow 0$	Н	1
NOP		No Operation	None 1		
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1

ADC - Add with Carry

Description:

Adds two registers and the contents of the C flag and places the result in the destination register Rd.

Operation:

 $(i) \qquad \qquad Rd \leftarrow Rd + Rr + C$

	Syntax:	Operands:
(i)	ADC Rd,Rr	$0 \le d \le 31, 0 \le r \le 31$

Program Counter: $PC \leftarrow PC + 1$

16 bit Opcode:

0001	11rd	dddd	rrrr
------	------	------	------

Status Register (SREG) Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	₽	₽	⇔	₽	₽	\Leftrightarrow

- H: $Rd3 \cdot Rr3 + Rr3 \cdot \overline{R3} + \overline{R3} \cdot Rd3$ Set if there was a carry from bit 3; cleared otherwise
- S: $N \oplus V$, For signed tests.
- V: $Rd7 \cdot Rr7 \cdot \overline{R7} + \overline{Rd7} \cdot \overline{Rr7} \cdot R7$ Set if two's complement overflow resulted from the operation; cleared otherwise.
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.
- C: $Rd7 \cdot Rr7 + Rr7 \cdot \overline{R7} + \overline{R7} \cdot Rd7$ Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

; Add R1:R0 to R3:R2 add r2,r0 ; Add low byte adc r3,r1 ; Add with carry high byte

ADD - Add without Carry

Description:

Adds two registers without the C flag and places the result in the destination register Rd.

(i)	Operation $Rd \leftarrow Rd$						
(i)	Syntax: ADD Rd,F	Rr	-	$cands: \le 31, 0 \le 1$	r ≤ 31		Program Counter: $PC \leftarrow PC + 1$
	16 bit Op	code:	l dddd	l rrr	r		
Status	Register (S	REG) and	l Boolean F	ormulae:			
I	Т	Н	S	V	Ν	Z	С
-	-	⇔	⇔	⇔	⇔	⇔	\Leftrightarrow
H:			$+\overline{R3} \cdot Rd3$ rry from bit	3; cleared	otherwise		
S:	$N \oplus V$, Fo	r signed t	ests.				
V:	Rd7 · Rr7 Set if two'			w resulted	from the o	operation;	cleared otherwise.
N:	R7 Set if MSE	B of the re	sult is set; c	leared othe	rwise.		
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.						
C:	$Rd7 \cdot Rr7 + Rr7 \cdot \overline{R7} + \overline{R7} \cdot Rd7$ Set if there was carry from the MSB of the result; cleared otherwise.						
R (Result) equals Rd after the operation.							
Examp	a		.,r2 28,r28		1 r2 to 1 r28 to		=r1+r2) f (r28=r28+r28)
Words	• 1 (2 hytes)						

ADIW - Add Immediate to Word

Description:

Adds an immediate value (0-63) to a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the pointer registers.

~			
\mathbf{O}	pera	atio	n:

 $Rdh:Rdl \leftarrow Rdh:Rdl + K$ (i)

	Syntax:	Operands:	Program Counter:
(i)	ADIW Rdl,K	dl \in {24,26,28,30}, 0 \leq K \leq 63	$PC \leftarrow PC + 1$

16 bit Opcode:

1001 0110	KKdd	KKKK
-----------	------	------

Status Register (SREG) and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	⇔	⇔	⇔	⇔	⇔

- S: $N \oplus V$, For signed tests.
- V: Rdh7 · R15 Set if two's complement overflow resulted from the operation; cleared otherwise.
- N: R15 Set if MSB of the result is set; cleared otherwise.
- $\overline{R15} \cdot \overline{R14} \cdot \overline{R13} \cdot \overline{R12} \cdot \overline{R11} \cdot \overline{R10} \cdot \overline{R9} \cdot \overline{R8} \cdot \overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Z: Set if the result is \$0000; cleared otherwise.
- C: $\overline{R15} \cdot Rdh7$

Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).

Example:

adiw r24,1 ; Add 1 to r25:r24 adiw r30,63 ; Add 63 to the Z pointer(r31:r30)

AND - Logical AND

Description:

Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination register Rd.

	Operation								
(i)	$Rd \leftarrow Rd \bullet$	Rr							
(i)	Syntax:Operands:AND Rd,Rr $0 \le d \le 31, 0 \le r \le 100$				≤ r ≤ 31		Program C PC ← PC +		
	16 bit Opc 0010	ode: 00rd	dddd	l rı	rr				
Status 1	Register (SF	REG) and	Boolean F	ormulae	2:				
<u> </u>	Т	Н	S	V	N	Z	С		
-	-	-	\Leftrightarrow	0	\Leftrightarrow	\Leftrightarrow	-		
S:	$N \oplus V$, Foi	signed te	sts.						
V:	0 Cleared								
N:	R7 Set if MSB	of the res	ult is set; cl	leared of	herwise.				
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R3}$ Set if the re								
R (Resu	ılt) equals Ro	l after the	operation.						
Examp Words: Cycles:	an 10 an : 1 (2 bytes)	di rl	,r3 6,1 ,r16	; S	itwise and et bitmas solate bi	k 0000	0001 in	result r16	in r2

ANDI - Logical AND with Immediate

Description:

Performs the logical AND between the contents of register Rd and a constant and places the result in the destination register Rd.

-							
Syntax:		One	rands:		1	Program (ounter:
•	ζ	-		$K \le 255$		0	
,			, -				
16 bit Opc	ode:						
0111	KKKK	dddd	d KKK	K			
Register (SR	REG) and	Boolean F	ormulae:				
Т	Н	S	V	Ν	Z	С	
-	-	\Leftrightarrow	0	\Leftrightarrow	\Leftrightarrow	-	
0 Cleared R7	-		leared othe	erwise.			
	-						
ult) equals Ro	l after the	operation.					
ar	ndi rl	8,\$10	; Iso	olate bi	it 4 in	r18	7
	$Rd \leftarrow Rd \bullet$ Syntax: ANDI Rd,I 16 bit Opc 0111 Register (SF T - N \oplus V, For 0 Cleared R7 Set if MSB $\overline{R7} \cdot \overline{R6} \cdot \overline{R3}$ Set if the re- ult) equals Ro- ole: ar ar ar ar ar 1 (2 bytes)	ANDI Rd,K 16 bit Opcode: 0111 KKKK Register (SREG) and T H N \oplus V, For signed te 0 Cleared R7 Set if MSB of the res $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot$ Set if the result is \$00 ult) equals Rd after the ble: andi r1 andi r1 andi r1 andi r1 andi r1 andi r1 andi r1 andi r1 andi r1 andi r1	$\overrightarrow{Rd} \leftarrow \overrightarrow{Rd} \bullet \overrightarrow{K}$ Open ANDI Rd,KOpen 16 ≤16 bit Opcode: $16 \le 16$ 0111KKKKdddcRegister (SREG) and Boolean FTHTHS-·-N ⊕ V, For signed tests.0ClearedR7Set if MSB of the result is set; c $\overrightarrow{R7} \cdot \overrightarrow{R6} \cdot \overrightarrow{R5} \cdot \overrightarrow{R4} \cdot \overrightarrow{R3} \cdot \overrightarrow{R2} \cdot \overrightarrow{R1} \cdot \overrightarrow{R}$ Set if the result is \$00; cleared cult) equals Rd after the operation.endindir18,\$10andir19,\$AA: 1 (2 bytes)	$\overrightarrow{Rd} \leftarrow \overrightarrow{Rd} \bullet \overrightarrow{K}$ Operands: 16 ≤ d ≤ 31, 0 ≤16 bit Opcode:16 ≤ d ≤ 31, 0 ≤16 bit Opcode:16 ≤ d ≤ 31, 0 ≤0111KKKKddddKKKKddddKKKRegister (SREG) and Boolean Formulae:THSV⇔0N ⊕ V, For signed tests.0N ⊕ V, For signed tests.0ClearedR7Set if MSB of the result is set; cleared otherwise. $\overrightarrow{R7} \cdot \overrightarrow{R6} \cdot \overrightarrow{R5} \cdot \overrightarrow{R4} \cdot \overrightarrow{R3} \cdot \overrightarrow{R2} \cdot \overrightarrow{R1} \cdot \overrightarrow{R0}$ Set if the result is \$00; cleared otherwise.alt) equals Rd after the operation.equals Rd after the operation.andir18, \$10andir18, \$10andir19, \$AA: 1 (2 bytes)	$\mathbf{Rd} \leftarrow \mathbf{Rd} \bullet \mathbf{K}$ Syntax:Operands: $16 \le d \le 31, 0 \le \mathbf{K} \le 255$ 16 bit Opcode: $\boxed{0111}$ \mathbf{KKKK} \mathbf{M} \mathbf{C} $\mathbf{Register}$ (SREG) and Boolean Formulae: \mathbf{T} \mathbf{H} \mathbf{S} \mathbf{V} \mathbf{N} $\mathbf{-}$ \mathbf{C} $\mathbf{N} \oplus \mathbf{V}$, For signed tests. 0 $\mathbf{Cleared}$ $\mathbf{R7}$ $\mathbf{R7}$ $\mathbf{R6} \cdot \mathbf{R5} \cdot \mathbf{R4} \cdot \mathbf{R3} \cdot \mathbf{R2} \cdot \mathbf{R1} \cdot \mathbf{R0}$ $\mathbf{Set if MSB of the result is set; cleared otherwise.}$ $\mathbf{R7} \cdot \mathbf{R6} \cdot \mathbf{R5} \cdot \mathbf{R4} \cdot \mathbf{R3} \cdot \mathbf{R2} \cdot \mathbf{R1} \cdot \mathbf{R0}$ $\mathbf{Set if the result is $00; cleared otherwise.}$ \mathbf{nlt}) equals \mathbf{Rd} after the operation. $\mathbf{de:}$ andi r17, \$0F $\mathbf{andi r18, $10}$ $\mathbf{R1}$ $\mathbf{R1}$ $\mathbf{R1}$ $\mathbf{R1}$ $\mathbf{R2}$ $\mathbf{R1}$ $\mathbf{R3}$ $\mathbf{R4}$ $\mathbf{R4}$ $\mathbf{R7}$ $\mathbf{R4}$ $\mathbf{R7}$ $\mathbf{R4}$ $\mathbf{R7}$ $\mathbf{R4}$ $\mathbf{R4}$ $\mathbf{R4}$ $\mathbf{R5}$ $\mathbf{R4}$	$\mathbf{R}\mathbf{d} \leftarrow \mathbf{R}\mathbf{d} \bullet \mathbf{K}$ Syntax:Operands:ANDI $\mathbf{R}\mathbf{d},\mathbf{K}$ $16 \le d \le 31, 0 \le \mathbf{K} \le 255$ 16 bit Opcode: 0111 $\mathbf{K}\mathbf{K}\mathbf{K}\mathbf{K}$ dddd $\mathbf{K}\mathbf{K}\mathbf{K}$ dddd $\mathbf{K}\mathbf{K}\mathbf{K}$ dddd $\mathbf{K}\mathbf{K}\mathbf{K}$ dddd $\mathbf{K}\mathbf{K}\mathbf{K}$ dddd $\mathbf{K}\mathbf{K}\mathbf{K}$ dddd $\mathbf{K}\mathbf{K}\mathbf{K}$ Register (SREG) and Boolean Formulae: \mathbf{T} \mathbf{H} \mathbf{S} \mathbf{V} $\mathbf{N} \oplus \mathbf{V}$, For signed tests.0Cleared $\mathbf{R}7$ Set if MSB of the result is set; cleared otherwise. $\mathbf{R}7 \cdot \mathbf{R}6 \cdot \mathbf{R}5 \cdot \mathbf{R}4 \cdot \mathbf{R}3 \cdot \mathbf{R}2 \cdot \mathbf{R}1 \cdot \mathbf{R}0$ Set if the result is \$00; cleared otherwise.ult) equals Rd after the operation.ble:andi $r17, $0F$ andi $r18, 10 andi $r18, 10 andi $r19, AA $r1(2 bytes)$	$\mathbf{R}\mathbf{d} \leftarrow \mathbf{R}\mathbf{d} \bullet \mathbf{K}$ Syntax: Operands: \mathbf{A} NDI $\mathbf{R}\mathbf{d},\mathbf{K}$ Operands: $\mathbf{I}6 \le \mathbf{d} \le 31, 0 \le \mathbf{K} \le 255$ $\mathbf{PC} \leftarrow \mathbf{PC} +$ 16 bit Opcode: $\boxed{0111}$ $\mathbf{K}\mathbf{K}\mathbf{K}$ $\mathbf{d}\mathbf{d}\mathbf{d}$ $\mathbf{K}\mathbf{K}\mathbf{K}$ Register (SREG) and Boolean Formulae: \mathbf{T} \mathbf{H} \mathbf{S} \mathbf{V} \mathbf{Z} \mathbf{C} $\mathbf{-}$ $\mathbf{-}$ $\mathbf{\leftrightarrow}$ 0 $\mathbf{\leftrightarrow}$ $\mathbf{-}$ $\mathbf{N} \oplus \mathbf{V}$, For signed tests. 0 $\mathbf{\leftrightarrow}$ $\mathbf{-}$ $\mathbf{N} \oplus \mathbf{V}$, For signed tests. 0 \mathbf{C} $\mathbf{\leftrightarrow}$ $\mathbf{N} \oplus \mathbf{V}$, For signed tests. 0 \mathbf{C} \mathbf{C} \mathbf{R}^{T} Set if MSB of the result is set; cleared otherwise. $\mathbf{R}^{T} \cdot \mathbf{R} 6 \cdot \mathbf{R} 5 \cdot \mathbf{R} 4 \cdot \mathbf{R} 3 \cdot \mathbf{R} 2 \cdot \mathbf{R} 1 \cdot \mathbf{R} 0$ Set if the result is \$00; cleared otherwise.andi 117 , $\$0\mathbf{F}$; Clear upper nibble of $\mathbf{r} 1$ andi $\mathbf{r} 18$, $\$10$ andi $\mathbf{r} 17$, $\$0\mathbf{F}$; Clear odd bits of $\mathbf{r} 19$: 1 (2 bytes):

ASR - Arithmetic Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C flag of the SREG. This operation effectively divides a twos complement value by two without changing its sign. The carry flag can be used to round the result.

(i)	Syntax: ASR Rd		-	Operands: $0 \le d \le 31$		Program Counter: $PC \leftarrow PC + 1$
	16 bit Opco 1001	ode: 010d	dddd	0101		

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	•	↕	↕	↕	₽	⇔

- S: $N \oplus V$, For signed tests.
- N ⊕ C (For N and C after the shift)
 Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.
- C: Rd0 Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

ldi	r16,\$10	; Load decimal 16 into r16
asr	r16	; r16=r16 / 2
ldi	r17,\$FC	; Load -4 in r17
asr	r17	; r17=r17/2

BCLR - Bit Clear in SREG

Description:

Clears a single flag in SREG.

Operation:

- (i) $SREG(s) \leftarrow 0$
- Syntax:Operands:(i)BCLR s $0 \le s \le 7$

Program Counter: PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
⇔	⇔	₽	₽	₽	₿	₿	⇔

- I: 0 if s = 7; Unchanged otherwise.
- T: 0 if s = 6; Unchanged otherwise.
- H: 0 if s = 5; Unchanged otherwise.
- S: 0 if s = 4; Unchanged otherwise.
- V: 0 if s = 3; Unchanged otherwise.
- N: 0 if s = 2; Unchanged otherwise.
- Z: 0 if s = 1; Unchanged otherwise.
- C: 0 if s = 0; Unchanged otherwise.

Example:

bclr	0	; Clear carry flag
bclr	7	; Disable interrupts

AMEL

Program Counter: $PC \leftarrow PC + 1$

BLD - Bit Load from the T Flag in SREG to a Bit in Register.

Description:

Copies the T flag in the SREG (status register) to bit b in register Rd.

(i)	Operation: $Rd(b) \leftarrow T$			
(i)	Syntax: BLD Rd,b		Operand $0 \le d \le 3$	ds: $1, 0 \le b \le 7$
	16 bit Opco	de:		
	1111	100d	dddd	Xbbb

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

		; Copy bit	
bst	r1,2	; Store bit 2 of r1 in T f	ilag
bld	r0,4	; Load T flag into bit 4 c	of rO

BRBC - Branch if Bit in SREG is Cleared

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form.

Operation:

(i) If SREG(s) = 0 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRBC s,k	$0 \le s \le 7, -64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 01kk
 kkkk
 ksss

Status Register (SREG) and Boolean Formulae:

<u> </u>	Т	Н	S	V	Ν	Ζ	С	_
-	-	-	-	-	-	-	-	
Example	c b		0,5 noteq	; Bra	anch if	20 to th zero fl	ag clea	ared
noteq:	n	op		; Bra	anch des	stinatio	on (do r	othing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRBS - Branch if Bit in SREG is Set

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form.

Operation:

(i) If SREG(s) = 1 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRBS s,k	$0 \le s \le 7, -64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 00kk
 kkkk
 ksss

Status Register (SREG) and Boolean Formulae:

<u> </u>	Т	H	I	S	V	Ν	Ζ	С	_
-	-	-		-	-	-	-	-	
Example	:	bst brbs	r0 6,]	,3 bitset		ad T bit anch T l		oit 3 of set	E rO
bitset	:	nop			; Bra	anch des	stinati	on (do r	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRCC - Branch if Carry Cleared

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 0,k).

Operation:

(i) If C = 0 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRCC k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 01kk
 kkkk
 k000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С	_
-	-	-	-	-	-	-	-	
Example:			2,r23 carry		l r23 to anch if		cleared	
nocarry:		op		; Bra	anch des	stinatio	on (do r	lothin

Words: 1 (2 bytes)

Cycles: 1 if condition is false

AIMEL

BRCS - Branch if Carry Set

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 0,k).

Operation:

(i) If C = 1 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRCS k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 00kk
 kkkk
 k000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С	_
-	-	-	-	-	-	-	-	
Example	С		6,\$56 rry		mpare r2 anch if			_
carry:		op		; Bra	anch des	stinatio	on (do 1	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BREQ - Branch if Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed binary number represented in Rd was equal to the unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 1,k).

Operation:

(i) If Rd = Rr (Z = 1) then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	BREQ k	$-64 \le k \le +63$	$PC \leftarrow PC + k + 1$
			$PC \leftarrow PC + 1$, if condition is false

16 bit Opco	de:		
1111	00kk	kkkk	k001

Status Register (SREG) and Boolean Formulae:

<u> </u>	Т	Н	S	V	Ν	Ζ	С	
-	-	-	-	-	-	-	-	
Example		-	,r0 ual	; Bra	anch if	regist	s rl and ers equa on (do 1	

Words: 1 (2 bytes)

Cycles: 1 if condition is false

AIMEL

BRGE - Branch if Greater or Equal (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is cleared. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary number represented in Rd was greater than or equal to the signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 4,k).

Operation:

(i) If $Rd \ge Rr (N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	BRGE k	$-64 \le k \le +63$	$PC \leftarrow PC + k + 1$
			$PC \leftarrow PC + 1$, if condition is false

16 bit Opco	de:		
1111	01kk	kkkk	k100

Status Register (SREG) and Boolean Formulae:

<u> </u>	Т	H	I	S	V	Ν	Ζ	С	_
-	-	-		-	-	-	-	-	
Example	:	cp brge		l,r12 eateq			egisters rll >=		
greate	d:	nop			; Bra	anch des	stinatio	on (do i	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRHC - Branch if Half Carry Flag is Cleared

Description:

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 5,k).

Operation:

(i) If H = 0 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRHC k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 01kk
 kkkk
 k101

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С	_
-	•	-	-	-	-	-	-	
Example		orhc hcl	ear	; Bra	anch if	half ca	arry fla	g cleared
hclear		 op		; Bra	anch des	stinatio	on (do n	othing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false 2 if condition is true

BRHS - Branch if Half Carry Flag is Set

Description:

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 5,k).

Operation:

(i) If H = 1 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

(i) BRHS k Operands: $-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16 bit Opco	ode:		
1111	00kk	kkkk	k101

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	V	Ν	Ζ	С	
-	-	-	-	-	-	-	-	
Example		rhs hs	et	; Bra	anch if	half ca	arry fla	lg set
hset:		op		; Bra	anch des	stinatio	on (do n	othing)
Words:	l (2 bytes)							

Cycles: 1 if condition is false 2 if condition is true

BRID - Branch if Global Interrupt is Disabled

Description:

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 7,k).

Operation:

(i) If I = 0 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1

	Syntax:	Operands:
(i)	BRID k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16 bit Opco	ode:		
1111	01kk	kkkk	k111

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С	_
-	-	-	-	-	-	-	-	
Example: brid intdis ; Branch if interrupt disabled								
intdis		op		; Bra	anch des	stinatio	on (do r	othing)

Words: 1 (2 bytes) Cycles: 1 if condition is false

BRIE - Branch if Global Interrupt is Enabled

Description:

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 7,k).

Operation:

(i) If I = 1 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1

	Syntax:	Operands:
(i)	BRIE k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16 bit Opcode:

1111 00kk kkkk k111

Status Register (SREG) and Boolean Formulae:

Ι	Т	н	S	V	Ν	Z	С	_
-	•	-	-	-	-	•	-	
Example: brie inten ; Branch if interrupt enabled							oled	
inten:		 Iop		; Bra	anch des	stinatio	on (do r	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false 2 if condition is true

BRLO - Branch if Lower (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned binary number represented in Rd was smaller than the unsigned binary number represented in Rr. This instruction branches relatively to PC in either direction (PC-64≤destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 0,k).

Operation:

(i) If Rd < Rr (C = 1) then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

Operands:

 $-64 \le k \le +63$

(i) BRLO k

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16 bit Opcode:

IIII UUKK KKKK KUUU	1111	00kk	kkkk	k000

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	\mathbf{V}	Ν	Ζ	С
-	-	-	-	-	-	-	-
Example	e i c k	nc ri pi ri	19,r19 19 19,\$10 00p	; Ind ; Cor ; Bra	anch if	19 with r19 < \$	\$10 \$10 (uns do nothi

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRLT - Branch if Less Than (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is set. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary number represented in Rd was less than the signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 4,k).

Operation:

(i) If $Rd < Rr (N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	BRLT k	$-64 \le k \le +63$	$PC \leftarrow PC + k + 1$
			$PC \leftarrow PC + 1$, if condition is false

16 bit Opco	ode:		
1111	00kk	kkkk	k100

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	V	Ν	Ζ	С	_
-	-	-	-	-	-	-	-	
Example	c k	orlt le	6,rl ss			l6 to r1 r16 < r		ned)
less:		lop		; Bra	anch des	stinatio	on (do r	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRMI - Branch if Minus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 2,k).

Operation:

(i) If N = 1 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1

	Syntax:	Operands:
(i)	BRMI k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 00kk
 kkkk
 k010

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С	
-	-	-	-	-	-	-	-	I
Example		subi i brmi i	r18,4 negative		otract 4 anch if	-	18 negativ	e

Words: 1 (2 bytes)

negative:

Cycles: 1 if condition is false

2 if condition is true

nop

; Branch destination (do nothing)

<u>AÎMEL</u>

BRNE - Branch if Not Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is cleared. If the instruction is executed immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 1,k).

Operation:

(i) If $Rd \neq Rr (Z = 0)$ then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	BRNE k	$-64 \le k \le +63$	$PC \leftarrow PC + k + 1$
			$PC \leftarrow PC + 1$, if condition is false

16 bit Opco	de:		
1111	01kk	kkkk	k001

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С		
-	-	-	-	-	-	-	-		
Example	e	or r2 nc r2	7,r27 7	; Clear r27 ; Increase r27					
	c b	orne lo op	7,5 op	; Compare r27 to 5 ; Branch if r27<>5 ; Loop exit (do nothing)					

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRPL - Branch if Plus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 2,k).

Operation:

(i) If N = 0 then PC \leftarrow PC + k + 1, else PC \leftarrow PC + 1

	Syntax:	Operands:
(i)	BRPL k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 01kk
 kkkk
 k010

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С	
-	-	-	-	-	-	-	-	
Example	S	subi r2 orpl po	6,\$50 sitive			\$50 from r26 pos		
positi		nop		; Bra	anch des	stinatio	on (do	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

AIMEL

BRSH - Branch if Same or Higher (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. If the instruction is executed immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr. This instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 0,k).

Operation:

(i) If $Rd \ge Rr (C = 0)$ then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	BRSH k	$-64 \le k \le +63$	$PC \leftarrow PC + k + 1$
			$PC \leftarrow PC + 1$, if condition is false

16 bit Opco	de:		
1111	01kk	kkkk	k000

Status Register (SREG) and Boolean Formulae:

_	Ι	Т	Н	S	V	Ν	Ζ	С	_
	-	-	-	-	-	-	-	-	
_	Example		brsh hi	9,4 .ghsm	; Bra		r19 >=	4 (uns:	5 /
	highsm	:	nop		; Bra	anch des	stinatio	on (do r	nothin

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRTC - Branch if the T Flag is Cleared

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 6,k).

Operation:

(i) If T = 0 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRTC k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 01kk
 kkkk
 k110

Status Register (SREG) and Boolean Formulae:

<u> </u>	Т	Н	S	V	Ν	Ζ	С	_
-	-	-	-	-	-	-	-	
Example	b b		,5 lear			5 of r3 this bi		
tclear		op		; Bra	anch des	stinatio	on (do 1	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRTS - Branch if the T Flag is Set

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 6,k).

Operation:

(i) If T = 1 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRTS k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 00kk
 kkkk
 k110

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	V	Ν	Ζ	С	_
-	-	-	-	-	-	-	-	
Example	b b	st r3 rts ts	•			5 of r3 this bi		
tset:	n	ор		; Bra	anch des	stinatio	on (do	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRVC - Branch if Overflow Cleared

Description:

Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is cleared. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBC 3,k).

Operation:

(i) If V = 0 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	BRVC k	$-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

 16 bit Opcode:

 1111
 01kk
 kkkk
 k011

Status Register (SREG) and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

Example:

-	_	r3,r4 noover		Add r4 to r3 Branch if no overflow
noover:	 nop		;	Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BRVS - Branch if Overflow Set

Description:

Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is set. This instruction branches relatively to PC in either direction (PC-64 \leq destination \leq PC+63). The parameter k is the offset from PC and is represented in two's complement form. (Equivalent to instruction BRBS 3,k).

Operation:

(i) If V = 1 then $PC \leftarrow PC + k + 1$, else $PC \leftarrow PC + 1$

(i) BRVS k Operands: $-64 \le k \le +63$

Program Counter: $PC \leftarrow PC + k + 1$ $PC \leftarrow PC + 1$, if condition is false

16 bit Opcode:								
1111	00kk	kkkk	k011					

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С	
-	-	-	-	-	-	-	-	
Example	a		,r4 erfl		d r4 to anch if	r3 overflo	w	_
overfl		 op		; Bra	anch des	stinatio	on (do	nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

BSET - Bit Set in SREG

Description:

Sets a single flag or bit in SREG.

Operation:

(i) $SREG(s) \leftarrow 1$

	Syntax:	Operands:	Program Counter:
(i)	BSET s	$0 \le s \le 7$	$PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0sss

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
⇔	⇔	₽	⇔	⇔	⇔	₽	⇔

1000

- I: 1 if s = 7; Unchanged otherwise.
- T: 1 if s = 6; Unchanged otherwise.
- H: 1 if s = 5; Unchanged otherwise.
- S: 1 if s = 4; Unchanged otherwise.
- V: 1 if s = 3; Unchanged otherwise.
- N: 1 if s = 2; Unchanged otherwise.
- Z: 1 if s = 1; Unchanged otherwise.
- C: 1 if s = 0; Unchanged otherwise.

Example:

bset 6 ; Set T flag bset 7 ; Enable interrupt

BST - Bit Store from Bit in Register to T Flag in SREG

Description:

Stores bit b from Rd to the T flag in SREG (status register).

(i)	Operation: $T \leftarrow Rd(b)$	
	Syntax:	Operands:
(i)	BST Rd,b	$0 \le d \le 31, 0 \le b \le 7$

Program Counter: $PC \leftarrow PC + 1$

16 bit Opcode:1111101dddddXbbb

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	⇔	-	-	-	-	-	-

T: 0 if bit b in Rd is cleared. Set to 1 otherwise.

Example:

		;	Сору	bit						
bst	r1,2	;	Store	e bit	2	of	r1	in	т	flag
bld	r0,4	;	Load	T int	to	bit	: 4	of	r0	

CALL - Long Call to a Subroutine

Description:

Calls to a subroutine within the entire program memory. The return address (to the instruction after the CALL) will be stored onto the stack. (See also RCALL).

Operation:

(i) (ii)	$PC \leftarrow k$ $PC \leftarrow k$						
(i)	Syntax: CALL k	Operands: $0 \le k \le 64K$	Program Counter: $PC \leftarrow k$	Stack STACK \leftarrow PC+2 SP \leftarrow SP-2, (2 bytes, 16 bits)			
(ii)	CALL k	$0 \le k \le 4M$	$PC \leftarrow k$	STACK \leftarrow PC+2 SP \leftarrow SP-3 (3 bytes, 22 bits)			

32 bit Opco	32 bit Opcode:							
1001	010k	kkkk	111k					
kkkk	kkkk	kkkk	kkkk					

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	V	N	Z	С
-	-	-	-	-	-	-	-
Example	m C	nov r sall c nop	r16,r0 check	; Ca	py r0 to 11 subro ntinue (outine	ning)
check:	c b	-	c16,\$42 error	; Br	eck if r anch if turn fro	equal	-
error:		 jmp e	error	; In	finite]	loop	

Words: 2 (4 bytes) Cycles: 4

CBI - Clear Bit in I/O Register

Description:

Clears a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers - addresses 0-31.

(i)	Operation I/O(P,b) ←							
(i)	Syntax: CBI P,b		-	rands: $P \le 31, 0 \le 1$	h < 7		Program C PC ← PC +	
(-)	16 bit Opc	eode:	זקמק			-		-
Status I	Register (SI	REG) and [Boolean F	ormulae:				
I	Т	Н	S	V	Ν	Z	С	
-	-	-	-	-	-	-	-	
Exampl		bi \$12	2,7	; Cle	ear bit	7 in Po	ort D	
Words: Cycles:	1 (2 bytes) 2							

CBR - Clear Bits in Register

Description:

Clears the specified bits in register Rd. Performs the logical AND between the contents of register Rd and the complement of the constant mask K. The result will be placed in register Rd.

Program Counter:

 $PC \leftarrow PC + 1$

Operation:

(i)	$Rd \leftarrow Rd \bullet (\$FF - K)$	
	Syntax:	Operands:
(i)	CBR Rd,K	$16 \le d \le 31, 0 \le K \le 255$

16 bit Opcode: See ANDI with K complemented.

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	⇔	0	⇔	₽	-

- S: $N \oplus V$, For signed tests.
- V: 0 Cleared
- N: R7 Set if MSB of the result is set; cleared otherwise.

r16,\$F0

r18,1

Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

cbr cbr ; Clear upper nibble of r16 ; Clear bit 0 in r18

CLC - Clear Carry Flag

Description:

Clears the Carry flag (C) in SREG (status register).

(i)	Operation $C \leftarrow 0$:						
(i)	Syntax: CLC		Ope None	rands:			Program C PC \leftarrow PC +	
Status	16 bit Opc 1001 Register (SF	0100	1000 Boolean F		0			
I -	<u> </u>	<u>H</u>	S -	<u>v</u> -	N -	Z -	C 0	
C:	0 Carry flag	cleared						
Examj	a	dd r0,r0 lc	0		d r0 to ear cari			
Words Cycles	: 1 (2 bytes) : 1							

CLH - Clear Half Carry Flag

Description:

Clears the Half Carry flag (H) in SREG (status register).

(i) Operation: $H \leftarrow 0$

- Syntax:
 - Syntax:Operands:CLHNone

Program Counter: $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 1101
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	0	-	-	-	-	-

H:

(i)

Half Carry flag cleared

Example:

clh ; Clear the Half Carry flag

Words: 1 (2 bytes) Cycles: 1

0

CLI - Clear Global Interrupt Flag

Description:

Clears the Global Interrupt flag (I) in SREG (status register).

Ope	eration:
-	0

(i) $I \leftarrow 0$

	Syntax:	Operands:	Program Counter:
(i)	CLI	None	$PC \leftarrow PC + 1$

16 bit Opco	de:		
1001	0100	1111	1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
0	-	-	-	-	-	-	-

I:

Global Interrupt flag cleared

Example:

cli		; Disable interrupts
in	r11,\$16	; Read port B
sei		; Enable interrupts

Words: 1 (2 bytes) Cycles: 1

0

CLN - Clear Negative Flag

Description:

Clears the Negative flag (N) in SREG (status register).

(i)	Operation : $N \leftarrow 0$:						
(i)	Syntax: CLN		Oper None	ands:			Program C $PC \leftarrow PC +$	
	<u>16 bit Opc</u>	ode:						
	1001	0100	1010	100	0			
Status	s Register (SR	EG) and	Boolean Fo	ormulae:				
Status I	s Register (SR	EG) and H	Boolean Fo	ormulae: V	N	Z	C	
					<u>N</u> 0	Z -	C -	
I	T - 0 Negative fla	<u>H</u>	S -	V				

CLR - Clear Register

Description:

Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the register.

(i)	Operati Rd ← R											
	Syntax:			Oper	ands:				Pro	ogram	Coun	ter:
(i)	CLR Rd			$0 \le d$						\leftarrow PC		
	16 bit 0		(see H 1dd	EOR Rd,Rd dddd		ddd						
Status I	Register ((SREG)	and	Boolean F	ormula	e:						
Ι	Т	I	I	S	V	N		Ζ		С	_	
-	-	-		0	0	0		1		-		
S:	0 Cleared											
V:	0 Cleared											
N:	0 Cleared											
Z:	1 Set											
R (Resu	lt) equals	Rd afte	r the	operation.								
Examp	le:											
loop:		clr inc	r18 r18		-	lear r ncreas	-	18				
		cpi brne	r18 loc	3,\$50 op	; C	ompare	e r18	B to	\$50			

CLS - Clear Signed Flag

Description:

Clears the Signed flag (S) in SREG (status register).

(i)	Operation: $S \leftarrow 0$							
	Syntax:		Oper	rands:			Program C	Counter:
(i)	CLS		None	2			$PC \leftarrow PC +$	- 1
	16 bit Opco	de:						
	1001	0100	1100) 100	0			
Status	s Register (SR	EG) and	Boolean F	ormulae:				
Status I	s Register (SR T	EG) and H	Boolean F	ormulae:	N	Z	С	_
					<u>N</u>	Z -	C -]
I	T	<u>H</u>	S	V		1	-]

Words: 1 (2 bytes) Cycles: 1

cls

; Clear signed flag

CLT - Clear T Flag

Description:

Clears the T flag in SREG (status register).

Operation:

- (i) $T \leftarrow 0$
- Syntax:Operands:(i)CLTNone

Program Counter: $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 1110
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	0	-	-	-	-	-	-

T: 0

T flag cleared

Example:

clt ; Clear T flag

CLV - Clear Overflow Flag

Description:

Clears the Overflow flag (V) in SREG (status register).

(i)	Operation $V \leftarrow 0$:						
	Syntax:		Oper	rands:		J	Program C	counter:
(i)	CLV		None	I	$PC \leftarrow PC +$	- 1		
	16 bit Opc	ode:						
	1001	0100	1011	100	0			
Status I	Register (SF	REG) and 1 H	Boolean F S	'ormulae: V	N	Z	С	
-	-	-	-	0	-	-	-	
V:	0 Overflow f	lag cleared	l					-
Examj	ple:							

impic.			
	add	r2,r3	; Add r3 to r2
	clv		; Clear overflow flag

CLZ - Clear Zero Flag

Description:

Clears the Zero flag (Z) in SREG (status register).

Oper	ation:

- (i) $Z \leftarrow 0$
- (i) **Syntax:**

Operands: None **Program Counter:** $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 1001
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	0	-

Z: 0

Zero flag cleared

Example:

add	r2,r3	;	Add	r3	to	r2
clz		;	Clea	ar z	zero	C

COM - One's Complement

Description:

This instruction performs a one's complement of register Rd

(i)	Operation Rd ← \$FF						
	Syntax:			rands:			Program Counter:
(i)	COM Rd		$0 \le c$	1≤31]	$PC \leftarrow PC + 1$
	16 bit Opc						
	1001	01	ddd ddd	d 000	0		
Status	Register (SF	REG) a	nd Boolean F	Formulae:			
Ι	Т	Н	S	\mathbf{V}	Ν	Z	С
-	-	-	\Leftrightarrow	0	⇔	\Leftrightarrow	1
V: N: Z:	$\overline{\mathbf{R7}} \cdot \overline{\mathbf{R6}} \cdot \overline{\mathbf{R2}}$	$\overline{5} \cdot \overline{\mathbf{R4}} \cdot \overline{\mathbf{I}}$	result is set; c $\overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R}$ \$00; Cleared	$\overline{0}$	erwise.		
C:	1 Set.						
R (Resu	ult) equals Ro	d after t	he operation.				
Examp	C	-	r4 zero		ke one' anch if		ement of r4
zero:		 op		; Bra	anch de	stinati	on (do nothing

CP - Compare

Description:

This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional branches can be used after this instruction.

(i)	Operation Rd - Rr	:						
	Syntax:			ands:			Program (
(i)	CP Rd,Rr		$0 \le d$	\leq 31, 0 \leq 1	r ≤ 31]	$PC \leftarrow PC$	+ 1
	16 bit Opc							
	0001	01rd	dddd	rrr	r			
Status	Register (SR	EG) and	Boolean F	ormulae:				
I	Т	Н	S	V	Ν	Z	С	
-	-	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow]
H:	$\overline{\text{Rd3}} \cdot \text{Rr3} +$ Set if there			it 3; cleare	ed otherwis	e		
S:	$N \oplus V$, For	signed tes	sts.					
V:	$Rd7 \cdot \overline{Rr7} \cdot$ Set if two's			w resulted	from the o	operation;	cleared oth	erwise.
N:	R7 Set if MSB	of the resu	ılt is set; cl	eared othe	erwise.			
Z:	$\overline{\mathbf{R7}} \cdot \overline{\mathbf{R6}} \cdot \overline{\mathbf{R5}}$ Set if the re	-						
C:	$\overline{\text{Rd7}} \cdot \text{Rr7} +$ Set if the al			ontents of	Rr is large	r than the	absolute va	lue of Rd; cleared otherwise.
R (Res	sult) after the	operation.						
Examp	ole:							
	C <u>r</u> br		,r19 Ceq	; Cor ; Bra	mpare r anch if	4 with : r4 <> :	r19 r19	

	<u>-</u>			
noteq:	nop	; Branch	destination	(do nothing)

CPC - Compare with Carry

Description:

This instruction performs a compare between two registers Rd and Rr and also takes into account the previous carry. None of the registers are changed. All conditional branches can be used after this instruction.

(i)	Operation: Rd - Rr - C							
	Syntax:	Operands:	Program Counter:					
(i)	CPC Rd,Rr	$0 \le d \le 31, 0 \le r \le 31$	$PC \leftarrow PC + 1$					
Status	16 bit Opcode:000001rdRegister (SREG) and							
Status	Register (SKEO) and	i Doorean Formulae.						
I	T H	S V N	ZC					
-	- ⇔	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	$\Leftrightarrow \Leftrightarrow$					
H:	$\overline{\text{Rd3}} \cdot \text{Rr3} + \text{Rr3} \cdot \text{R3}$ Set if there was a bo	+ $R3 \cdot \overline{Rd3}$ rrow from bit 3; cleared otherw	vise					
S:	$N \oplus V$, For signed tests.							
V:	$Rd7 \cdot \overline{Rr7} \cdot \overline{R7} + \overline{Rd7} \cdot Rr7 \cdot R7$ Set if two's complement overflow resulted from the operation; cleared otherwise.							
N:	R7 Set if MSB of the re	sult is set; cleared otherwise.						
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0} \cdot Z$ Previous value remains unchanged when the result is zero; cleared otherwise.							
C:	$\overline{\text{Rd7}} \cdot \text{Rr7} + \text{Rr7} \cdot \text{R7} + \text{R7} \cdot \overline{\text{Rd7}}$ Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of Rd; cleared otherwise.							
R (Res	sult) after the operation	1.						
Examp	cp r2 cpc r3 brne no	2,r0 ; Compare 3,r1 ; Compare 1						
noteo	I: nop	; Branch de	estination (do nothing)					

CPI - Compare with Immediate

Description:

This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional branches can be used after this instruction.

(i)	Operatio Rd - K	n:					
(i)	Syntax: CPI Rd,K		-	rands: d ≤ 31, 0≤ K	X ≤ 255		ogram Counter: c ← PC + 1
Statuc	16 bit Op 0011	KKK	K dddd d Boolean F				
I	T	H	S	V	N	Z	С
-	-	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
H:			⊦ R3 · Rd3 prrow from b	it 3; cleared	otherwise	2	
S:	$N \oplus V, F$	or signed t	ests.				
V:		$\overline{R7} + \overline{Rd7}$'s comple		w resulted f	rom the o	peration; cle	ared otherwise.
N:	R7 Set if MS	B of the re	esult is set; cl	leared other	wise.		
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.						
C:	$\overline{\text{Rd7}} \cdot \text{K7} + \text{K7} \cdot \text{R7} + \text{R7} \cdot \overline{\text{Rd7}}$ Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.						
R (Res	R (Result) after the operation.						
Examp	c ł	orne e	19,3 rror	; Comp ; Bran	pare rl nch if	9 with 3 r19<>3	
error		nop		; Bran	nch des	tination	(do nothing)

CPSE - Compare Skip if Equal

Description:

This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd = Rr.

Operation:

(i) If Rd = Rr then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$

	Syntax:	Operands:
(i)	CPSE Rd,Rr	$0 \le d \le 31, 0 \le r \le 31$

Program Counter: PC \leftarrow PC + 1, Condition false - no skip PC \leftarrow PC + 2, Skip a one word instruction PC \leftarrow PC + 3, Skip a two word instruction

16 bit Opcode:						
0001	00rd	dddd	rrrr			

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

- inc r4 cpse r4,r0 neg r4 nop
- ; Increase r4 ; Compare r4 to r0 ; Only executed if r4<>r0 ; Continue (do nothing)

DEC - Decrement

Description:

Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be expected to perform consistently. When operating on two's complement values, all signed branches are available.

Operation:

 $Rd \leftarrow Rd - 1$ (i)

Syntax: **Operands:** DEC Rd $0 \le d \le 31$ (i)

Program Counter: $PC \leftarrow PC + 1$

16 bit Opcode:

1001 010d		dddd	1010

Status Register and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
-	-	-	⇔	⇔	↕	₽	-

 $N \oplus V$ S: For signed tests.

- V: $R7 \cdot R6 \cdot R5 \cdot R4 \cdot R3 \cdot R2 \cdot R1 \cdot R0$ Set if two's complement overflow resulted from the operation; cleared otherwise. Two's complement overflow occurs if and only if Rd was \$80 before the operation.
- N: **R**7 Set if MSB of the result is set; cleared otherwise.
- $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Z: Set if the result is \$00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:

loop:

ldi	r17,\$10	;	Load constant in r17
add	r1,r2	;	Add r2 to r1
dec	r17	;	Decrement r17
brne	loop	;	Branch if r17<>0
nop		;	Continue (do nothing)

EOR - Exclusive OR

Description:

Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination register Rd.

(i)	Operation $Rd \leftarrow Rd$							
(i)	Syntax: EOR Rd,R	r	-	rands: $l \leq 31, 0 \leq 1$	r ≤ 31		Program C PC ← PC +	
16 bit Opcode: 0010 01rd dddd rrrr Status Register (SREG) and Boolean Formulae:								
I	Т	Н	S	v	Ν	Z	С	
-	-	-	⇔	0	⇔	⇔	-	

- **S**: $N \oplus V$, For signed tests.
- V: 0 Cleared
- N: **R**7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

eor r4,r4 r0,r22 eor

; Clear r4 ; Bitwise exclusive or between r0 and r22

ICALL - Indirect Call to Subroutine

Description:

Indirect call of a subroutine pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits wide and allows call to a subroutine within the current 64K words (128K bytes) section in the program memory space.

Operation:

- (i) $PC(15-0) \leftarrow Z(15-0)$ Devices with 16 bits PC, 128K bytes program memory maximum.
- (ii) $PC(15-0) \leftarrow Z(15-0)$ Devices with 22 bits PC, 8M bytes program memory maximum.
- PC(21-16) is unchanged

(i)	Syntax: ICALL	Operands: None	Program Counter: See Operation	Stack STACK ← PC+1 SP ← SP-2 (2 bytes, 16 bits)
(ii)	ICALL	None	See Operation	STACK \leftarrow PC+1 SP \leftarrow SP-3 (3 bytes, 22 bits)

16 bit Opcode:						
1001	0101	XXXX	1001			

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

mov r30,r0 icall ; Set offset to call table
; Call routine pointed to by r31:r30

IJMP - Indirect Jump

Description:

Indirect jump to the address pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits wide and allows jump within the current 64K words (128K bytes) section of program memory.

(i) (ii)	Operation PC \leftarrow Z(15 PC(15-0) \leftarrow PC(21-16)	5 - 0)	Devic			•	es program mer program memo	nory maximum. ry maximum.	
(ii)	Syntax: IJMP	Ope Non	e rands: e	0	am Counte peration	er:	Stack Not Affected		
(iii)	IJMP	Non	e	See Operation			Not Affected		
Status	16 bit Opc 1001 Register (SI	0100	XXXX Boolean Fe						
<u> </u>	Т	Н	S	V	N	Z	С		
-	-	-	-	-	-	-	-		
Examp	Example: mov r30,r0 ; Set offset to jump table ijmp ; Jump to routine pointed to by r31:r30								

; Branch destination (do nothing)

IN - Load an I/O Port to Register

Description:

Loads data from the I/O Space (Ports, Timers, Configuration registers etc.) into register Rd in the register file.

(i)	Operati Rd ← P	o n:						
(i)	Syntax: IN Rd,P	-	erands: $d \le 31, 0 \le$	≤ P ≤ 63		Program PC ← PC		
	<u> 16 bit O</u>	pcode:						
	1011	. OPPd	dddd	l PPP	P			
Status Register (SREG) and Boolean Formulae:								
Ι	Т	Н	S	v	N	Z	С	
I -	T	H -	S -	V -	N -	Z -	C -	

Words: 1 (2 bytes) Cycles: 1

nop

exit:

INC - Increment

Description:

Adds one -1- to the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When operating on two's complement values, all signed branches are available.

Operation:

 $(i) \qquad Rd \leftarrow Rd + 1$

	Syntax:	Operands:	Program Counter:
(i)	INC Rd	$0 \le d \le 31$	$PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 010d
 dddd
 0011

Status Register and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
-	-	-	⇔	⇔	₽	₽	-

- S: $N \oplus V$ For signed tests.
- V: $R7 \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if two's complement overflow resulted from the operation; cleared otherwise. Two's complement overflow occurs if and only if Rd was \$7F before the operation.
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:

loop:	clr inc	r22 r22		clear r22 increment r22
	cpi brne nop	r22,\$4F loop	;	Compare r22 to \$4f Branch if not equal Continue (do nothing)

JMP - Jump

Description:

Jump to an address within the entire 4M (words) program memory. See also RJMP.

Operation:

(i) $PC \leftarrow k$

	Syntax:	Operands:	Program Counter:	Stack
(i)	JMP k	$0 \leq k \leq 4M$	$PC \leftarrow k$	Unchanged

32 bit Opcode:

2 bit Opcode.								
1001	010k	kkkk	110k					
kkkk	kkkk	kkkk	kkkk					

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

_	mov jmp	rl,r0 farplc		Copy r0 to r1 Unconditional jump
farplc:	nop		;	Jump destination (do nothing)

LD - Load Indirect from SRAM to Register using Index X

Description:

Loads one byte indirect from SRAM to register. The SRAM location is pointed to by the X (16 bits) pointer register in the register file. Memory access is limited to the current SRAM page of 64K bytes. To access another SRAM page the RAMPX in register in the I/O area has to be changed.

The X pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These features are especially suited for accessing arrays, tables, and stack pointer usage of the X pointer register.

Using the X pointer:

	Operation:		Comment:
(i)	$Rd \leftarrow (X)$		X: Unchanged
(ii)	$Rd \leftarrow (X)$	$\mathbf{X} \leftarrow \mathbf{X} + 1$	X: Post incremented
(iii)	$X \leftarrow X - 1$	$Rd \leftarrow (X)$	X: Pre decremented

	Syntax:	Operands:	Program Counter:
(i)	LD Rd, X	$0 \le d \le 31$	$PC \leftarrow PC + 1$
(ii)	LD Rd, X+	$0 \le d \le 31$	$PC \leftarrow PC + 1$
(iii)	LD Rd,-X	$0 \le d \le 31$	$PC \leftarrow PC + 1$

16 bit Opcode :							
(i)	1001	000d	dddd	1100			
(ii)	1001	000d	dddd	1101			
(iii)	1001	000d	dddd	1110			

Status Register (SREG) and Boolean Formulae:

1 1	I H	S	V	N	Z	С
		-	-	-	-	-

Example:

clr	r27	;	Clear X high byte
ldi	r26,\$20	;	Set X low byte to \$20
ld	r0,X+	;	Load r0 with SRAM loc. \$20(X post inc)
ld	r1,X	;	Load r1 with SRAM loc. \$21
ldi	r26,\$23	;	Set X low byte to \$23
ld	r2,X	;	Load r2 with SRAM loc. \$23
ld	r3,-X	;	Load r3 with SRAM loc. \$22(X pre dec)

AIMEL

LD (LDD) - Load Indirect from SRAM to Register using Index Y

Description:

Loads one byte indirect with or without displacement from SRAM to register. The SRAM location is pointed to by the Y (16 bits) pointer register in the register file. Memory access is limited to the current SRAM page of 64K bytes. To access another SRAM page the RAMPY register in the I/O area has to be changed.

The Y pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These features are especially suited for accessing arrays, tables, and stack pointer usage of the Y pointer register.

Using the Y pointer:

	Operation:		Comment:	
(i)	$Rd \leftarrow (Y)$		Y: Unchanged	
(ii)	$Rd \leftarrow (Y)$	$Y \leftarrow Y + 1$	Y: Post incremented	
(iii)	$Y \leftarrow Y - 1$	$Rd \leftarrow (Y)$	Y: Pre decremented	
(iiii)	$Rd \leftarrow (Y+q)$		Y: Unchanged, q: Displacement	
	Syntax:		Operands:	Program Counter:
(i)	Syntax: LD Rd, Y		Operands: $0 \le d \le 31$	Program Counter: $PC \leftarrow PC + 1$
(i) (ii)	•		•	
	LD Rd, Y		$0 \le d \le 31$	$PC \leftarrow PC + 1$

16 bit Opcode :							
(i)	1000	000d	dddd	1000			
(ii)	1001	b000	dddd	1001			
(iii)	1001	b000	dddd	1010			
(iiii)	10q0	qq0d	dddd	1qqq			

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С	
-	-	-	-	-	-	-	-	
Example	c 1 1 1 1 1	d r0 d r1 di r2 d r2 d r2 d r3	8,\$20 ,Y+ ,Y 8,\$23	; Set ; Loa ; Loa ; Set ; Loa ; Loa	Y low ad r0 w ad r1 w Y low ad r2 w ad r3 w	ith SRAM byte to ith SRAM	\$20 1 loc. 1 loc. 5 \$23 1 loc. 1 loc.	\$23 \$22(Y pre dec)

LD (LDD) - Load Indirect From SRAM to Register using Index Z

Description:

Loads one byte indirectly with or without displacement from SRAM to register. The SRAM location is pointed to by the Z (16 bits) pointer register in the register file. Memory access is limited to the current SRAM page of 64K bytes. To access another SRAM page the RAMPZ register in the I/O area has to be changed.

The Z pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These features are especially suited for stack pointer usage of the Z pointer register, however because the Z pointer register can be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X or Y pointer as a dedicated stack pointer.

For using the Z pointer for table lookup in program memory see the LPM instruction.

Using the Z pointer:

	Operation:		Comment:	
(i)	$Rd \leftarrow (Z)$		Z: Unchanged	
(ii)	$Rd \leftarrow (Z)$	$Z \leftarrow Z + 1$	Z: Post increment	
(iii)	$Z \leftarrow Z - 1$	$Rd \leftarrow (Z)$	Z: Pre decrement	
(iiii)	$Rd \leftarrow (Z+q)$		Z: Unchanged, q: Displacement	
	Syntax:		Operands:	Program Counter:
(i)	Syntax: LD Rd, Z		Operands: $0 \le d \le 31$	Program Counter: $PC \leftarrow PC + 1$
(i) (ii)	•		•	0
	LD Rd, Z		$0 \le d \le 31$	$PC \leftarrow PC + 1$
(ii)	LD Rd, Z LD Rd, Z+		$0 \le d \le 31$ $0 \le d \le 31$	$PC \leftarrow PC + 1$ $PC \leftarrow PC + 1$

16 bit Opcode :							
(i)	1000	000d	dddd	0000			
(ii)	1001	000d	dddd	0001			
(iii)	1001	000d	dddd	0010			
(iiii)	10q0	qq0d	dddd	0qqq			

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

clr	r31	;	Clear Z high byte
ldi	r30,\$20	;	Set Z low byte to \$20
ld	r0,Z+	;	Load r0 with SRAM loc. \$20(Z post inc)
ld	rl,Z	;	Load r1 with SRAM loc. \$21
ldi	r30,\$23	;	Set Z low byte to \$23
ld	r2,Z	;	Load r2 with SRAM loc. \$23
ld	r3,-Z	;	Load r3 with SRAM loc. \$22(Z pre dec)
ldd	r4,Z+2	;	Load r4 with SRAM loc. \$24

Program Counter: $PC \leftarrow PC + 1$

LDI - Load Immediate

Description:

Loads an 8 bit constant directly to register 16 to 31.

Operation:

(i) $Rd \leftarrow K$

	Syntax:	Operands:
(i)	LDI Rd,K	$16 \le d \le 31, 0 \le K \le 255$

16 bit Opcode:

	1110	KKKK	dddd	KKKK
--	------	------	------	------

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	V	Ν	Z	С
-	-	-	-	-	-	-	-

Example:

clr	r31	; Clear Z high byte
ldi	r30,\$F0	; Set Z low byte to \$F0
lpm		; Load constant from program
		; memory pointed to by Z

LDS - Load Direct from SRAM

Description:

Loads one byte from the SRAM to a Register. A 16-bit address must be supplied. Memory access is limited to the current SRAM Page of 64K bytes. The LDS instruction uses the RAMPZ register to access memory above 64K bytes.

- **Operation:**
- $Rd \leftarrow (k)$ (i)
- Syntax: (i) LDS Rd,k

 $0 \le d \le 31, 0 \le k \le 65535$

Program Counter: $PC \leftarrow PC + 2$

32 bit Opcode:

1001	000d	dddd	0000
kkkk	kkkk	kkkk	kkkk

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Operands:

Example:

lds r2,\$FF00 add r2,r1 \$FF00,r2 sts

; Load r2 with the contents of SRAM location \$FF00 ; add r1 to r2 ; Write back

LPM - Load Program Memory

Description:

Loads one byte pointed to by the Z register into register 0 (R0). This instruction features a 100% space effective constant initialization or constant data fetch. The program memory is organized in 16 bits words and the LSB of the Z (16 bits) pointer selects either low byte (0) or high byte (1). This instruction can address the first 64K bytes (32K words) of program memory.

	Operation:	Comment:	
(i)	$R0 \leftarrow (Z)$	Z points to program memory	
	Syntax:	Operands:	Program Counter:
(i)	LPM	None	$PC \leftarrow PC + 1$

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

l	Т	H	S	V	Ν	Z	С
-	-	-	-	-	-	-	-

Example:

clr	r31
ldi	r30,\$F0
lpm	

; Clear Z high byte ; Set Z low byte ; Load constant from program ; memory pointed to by Z (r31:r30)

LSL - Logical Shift Left

Description:

Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C flag of the SREG. This operation effectively multiplies an unsigned value by two.

(i)	Operatio	n:					
	b7	<u> </u>	b	$0 \rightarrow 0$			
	07			0			
(i)	Syntax: LSL Rd			rands: 1 ≤ 31			Program Counter: PC ← PC + 1
	16 bit Op	code: (se	e ADD Rd,F d ddd		d		
Status	Register (S	REG) an	d Boolean I	Formulae:			
Ι	Т	н	S	V	Ν	Z	С
-	-	\Leftrightarrow	\Leftrightarrow	⇔	\Leftrightarrow	⇔	\Leftrightarrow
H:	Rd3						
S:	$N \oplus V, Fe$	or signed	tests.				
V:			C after the sl C is clear) o		and C is s	et); Cleare	ed otherwise (for values of N and C after the
N:	R7 Set if MS	B of the r	esult is set; c	cleared othe	rwise.		
Z:			$\overline{3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R}$ 00; cleared of				
C:	Rd7 Set if, bef	ore the sh	ift, the MSB	of Rd was	set; cleare	d otherwis	se.
R (Res	ult) equals H	Rd after th	e operation.				
Examp	ā		0,r4 0		d r4 to Ltiply r		
Words	: 1 (2 bytes)					

LSR - Logical Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C flag of the SREG. This operation effectively divides an unsigned value by two. The C flag can be used to round the result.

Operation:

MOV - Copy Register

Description:

This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination register Rd is loaded with a copy of Rr.

Program Counter: $PC \leftarrow PC + 1$

(i)	Operation: Rd ← Rr		
(i)	Syntax: MOV Rd,Rr	Operands: $0 \le d \le 31, 0 \le r \le 31$	
	16 bit Opcode:		

0010	11rd	dddd	rrrr

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
-	-	-	-	-	-	-	-
Example		mov r1 call che			by r0 to 11 subro		
check:		cpi rl ret	6,\$11		mpare rl curn fro		

MUL - Multiply

Description:

This instruction performs 8-bit \times 8-bit \rightarrow 16-bit unsigned multiplication.

The multiplicand Rr and the multiplier Rd are two registers. The 16-bit product is placed in R1 (high byte) and R0 (low byte). Note that if the multiplicand and the multiplier is selected from R0 or R1 the result will overwrite those after multiplication.

Operation:

(i) $R1,R0 \leftarrow Rr \times Rd$

Syntax:Operands:Program Counter:(i)MUL Rd,Rr $0 \le d \le 31, 0 \le r \le 31$ $PC \leftarrow PC + 1$

16 bit Opcode:							
1001	11rd	dddd	rrrr				

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	⇔

C: R15

Set if bit 15 of the result is set; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:

mul r6,r5 ; Multiply r6 and r5
mov r6,r1 ; Copy result back in r6:r5
mov r5,r0 ; Copy result back in r6:r5

Words: 1 (2 bytes) Cycles: 2

Not available in base-line microcontrollers.

NEG - Two's Complement

Description:

Replaces the contents of register Rd with its two's complement; the value \$80 is left unchanged.

(i)	Operati Rd ← \$						
(i)	Syntax:Operands:NEG Rd $0 \le d \le 31$			Program Counter: PC ← PC + 1			
	16 bit C	-	10d dddd	000)1		
Status	Register	(SREG)	and Boolean Fo	rmulae:			
I -	T -	I ¢		V ⇔	N ⇔	Z ⇔	C ⇔
H:	$R3 \cdot \overline{Rd3}$ Set if there was a borrow from bit 3; cleared otherwise						
S:	$N \oplus V$ For signed tests.						
V:	$R7 \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if there is a two's complement overflow from the implied subtraction from zero; cleared otherwise. A two's complement overflow will occur if and only if the contents of the Register after operation (Result) is \$80.						
N:	R7 Set if MSB of the result is set; cleared otherwise.						
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; Cleared otherwise.						
C:	R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0 Set if there is a borrow in the implied subtraction from zero; cleared otherwise. The C flag will be set in all cases except when the contents of Register after operation is \$00.						
R (Res	ult) equals	Rd afte	r the operation.				
Examp		sub brpl neg	rl1,r0 positive rl1	; Bra ; Tal	ke two′	resul s comp	m r11 t positive lement of r11

Words: 1 (2 bytes) Cycles: 1

positive:

nop

; Branch destination (do nothing)

NOP - No Operation

Description:

This instruction performs a single cycle No Operation.

(i)	Operation: No		
(i)	Syntax: NOP	Operands: None	
	16 hit Oncode:		

Program (Counter:
$PC \leftarrow PC -$	+ 1

 16 bit Opcode:

 0000
 0000
 0000
 0000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

clr	r16	;	Clear r16
ser	r17	;	Set r17
out	\$18,r16	;	Write zeros to Port B
nop		;	Wait (do nothing)
out	\$18,r17	;	Write ones to Port B

OR - Logical OR

Description:

Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register Rd.

(i)	Operation Rd ← Rd							
(i)	Syntax: OR Rd,Rr		-	$cands: \le 31, 0 \le 1$	r ≤ 31	Program Counter: $PC \leftarrow PC + 1$		
	16 bit Opcode:001010rdddddrrrr							
Status	Register (SI	REG) and	l Boolean F	ormulae:				
I	<u> </u>	H -	S	V 0	N		С	
-	-	-	\Leftrightarrow	U	⇔	⇔	-	
S:	$N \oplus V$, Fo	r signed to	ests.					
V:	0 Cleared							
N:	R7 Set if MSE	B of the re	sult is set; cl	leared othe	rwise.			
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.							
R (Result) equals Rd after the operation.								
Examj	xample: or r15,r16 ; Do bitwise or between register bst r15,6 ; Store bit 6 of r15 in T flag brts ok ; Branch if T flag set						15 in T flag	
ok:		op		; Bra	anch des	stinati	on (do nothing)	
Words	Words: 1 (2 bytes)							

Cycles: 1

ORI - Logical OR with Immediate

Description:

Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register Rd.

Operation:

(i)	Rd ←	Rd	v	Κ

	Syntax:	Operands:
(i)	ORI Rd,K	$16 \le d \le 31, 0 \le K \le 255$

Program Counter: $PC \leftarrow PC + 1$

16 bit Opcode:

0110 KKKK dddd KKKK

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	₽	0	⇔	₽	-

- S: $N \oplus V$, For signed tests.
- V: 0 Cleared
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

ori r16,\$F0 ; Set high nibble of r16 ori r17,1 ; Set bit 0 of r17

OUT - Store Register to I/O port

Description:

Stores data from register Rr in the register file to I/O space (Ports, Timers, Configuration registers etc.).

(i)	Operation P ← Rr	:						
	Syntax:	-					Program (
(i)	OUT P,Rr		$0 \le r \le 31, 0 \le P \le 63 \qquad PC \leftarrow PC + 1$					- 1
	16 bit Opc	ode:						
	1011	1PPr	rrrr	· PPE	PP			
Status Register (SREG) and Boolean Formulae:								
<u> </u>	<u> </u>	H	S	V	N	Z	С	-
-	-	-	-	-	-	-	-	
Examp		1 20 20 1 6		• 01				_

clr	r16	; Clear r16	
ser	r17	; Set r17	
out	\$18,r16	; Write zeros to Port E	3
nop		; Wait (do nothing)	
out	\$18,r17	; Write ones to Port B	

POP - Pop Register from Stack

Description:

This instruction loads register Rd with a byte from the STACK.

(i) Operation: Rd ← STACK

	Syntax:	Operands:	Program Counter:	Stack
(i)	POP Rd	$0 \le d \le 31$	$PC \leftarrow PC + 1$	$\mathbf{SP} \leftarrow \mathbf{SP} + 1$

16 bit Opcode:						
1001	000d	dddd	1111			

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Exam	ple:

L'ampie.	call	routine	; Call subroutine
routine:	 push push		; Save r14 on the stack ; Save r13 on the stack
	pop pop ret	r13 r14	; Restore r13 ; Restore r14 ; Return from subroutine

PUSH - Push Register on Stack

Description:

This instruction stores the contents of register Rr on the STACK.

Operation:

(i) STACK $\leftarrow Rr$

	Syntax:	Operands:	Program Counter:	Stack:
(i)	PUSH Rr	$0 \le r \le 31$	$PC \leftarrow PC + 1$	$\text{SP} \leftarrow \text{SP} - 1$

16 bit Opcode:

1001 001d dddd 1111

Status Register (SREG) and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

F	call	routine	; Call subroutine	
routine:	 push push		; Save r14 on the stack ; Save r13 on the stack	
	pop pop ret	r13 r14	<pre>; Restore r13 ; Restore r14 ; Return from subroutine</pre>	2

RCALL - Relative Call to Subroutine

Description:

Calls a subroutine within $\pm 2K$ words (4K bytes). The return address (the instruction after the RCALL) is stored onto the stack. (See also CALL).

(i) (ii)	Operation: PC \leftarrow PC + k + PC \leftarrow PC + k +			tes program memory maximum. s program memory maximum.
(i)	Syntax: RCALL k	Operands: $-2K \le k \le 2K$	Program Counter: $PC \leftarrow PC + k + 1$	Stack STACK \leftarrow PC+1 SP \leftarrow SP-2 (2 bytes, 16 bits)
(ii)	RCALL k	$-2K \le k \le 2K$	$PC \leftarrow PC + k + 1$	STACK \leftarrow PC+1 SP \leftarrow SP-3 (3 bytes, 22 bits)

 16 bit Opcode:

 1101
 kkkk
 kkkk
 kkkk

Status Register (SREG) and Boolean Formulae:

Ι	Т		H	S	V	Ν	Z	С
-	-		-	-	-	-	-	-
Example	:	rcall	ro	utine	; Cal	ll subro	outine	
routin	e:	 push	r1	4	; Sav	ve rl4 d	on the s	stack
		pop ret	rl	4		store ri curn fro	14 om subro	outine
XX 7 1	1 (0 1							

RET - Return from Subroutine

Description:

Returns from subroutine. The return address is loaded from the STACK.

Operation:

(i) (ii)	$PC(15-0) \leftarrow PC(21-0) $				bytes program memory maximum. Tes program memory maximum.
(i)	Syntax: RET	Operat None	nds:	Program Counter: See Operation	Stack SP \leftarrow SP +2, (2 bytes, 16 bits pulled)
(ii)	RET	None		See Operation	$SP \leftarrow SP + 3$, (3 bytes, 22 bits pulled)

 16 bit Opcode:

 1001
 0101
 0xx0
 1000

Status Register (SREG) and Boolean Formulae:

I	Т		H	S	V	Ν	Ζ	С
-	-		-	-	-	-	-	-
Example	:	call	ro	utine	; Cal	ll subro	outine	
routin	e:	push	r1	4	; Sav	ve r14 c	on the s	stack
		pop ret	r1	4		store r1 turn fro		outine

RETI - Return from Interrupt

Description:

Returns from interrupt. The return address is loaded from the STACK and the global interrupt flag is set.

Operation:

(i) (ii)				es with 16 bits PC, 128K bytes program memory maximum. es with 22 bits PC, 8M bytes program memory maximum.				
(i)	Syntax: RETI	-	Operands: None		Program Counter: See Operation		Stack SP \leftarrow SP +:	2 (2 bytes, 16 bits)
(ii)	RETI	None		See Op	See Operation S		$SP \leftarrow SP + 2$	3 (3 bytes, 22 bits)
Status	16 bit Opc 1001 Register (SI	100 ormulae:	0					
<u> </u>	Т	н	S	V	Ν	Z	С	_
I 1	T -	H -	<u>s</u> -	V -	N -	Z -	C -]
	T - 1 The I flag	-					<u>C</u>]
1	- 1 The I flag	-					C]
1 I:	1 The I flag i	-		-		-	-]

RJMP - Relative Jump

Description:

Relative jump to an address within PC-2K and PC + 2K (words). In the assembler, labels are used instead of relative operands. For AVR microcontrollers with program memory not exceeding 4K words (8K bytes) this instruction can address the entire memory from every address location.

Operation:

(i) $PC \leftarrow PC + k + 1$

	Syntax:	Operands:	Program Counter:	Stack
(i)	RJMP k	$-2K \le k \le 2K$	$PC \leftarrow PC + k + 1$	Unchanged

16 bit Opcode:

I	1100	kkkk	kkkk	kkkk
	00 F F	212121	212121	212121

Status Register (SREG) and Boolean Formulae:

<u> </u>	Т	Н	S	V	Ν	Z	С
-	-	-	-	-	-	-	-

Example:

	cpi	r16,\$42	; Compare r16 to \$42
	brne	error	; Branch if r16 <> \$42
	rjmp	ok	; Unconditional branch
error:	add	r16,r17	; Add r17 to r16
	inc	r16	; Increment r16
ok:	nop		; Destination for rjmp (do nothing)

ROL - Rotate Left trough Carry

Description:

Shifts all bits in Rd one place to the left. The C flag is shifted into bit 0 of Rd. Bit 7 is shifted into the C flag.

Operation:

rol r15 ; Rotate left brcs oneenc ; Branch if carry set ... oneenc: nop ; Branch destination (do nothing) Words: 1 (2 bytes) Cycles: 1

ROR - Rotate Right trough Carry

Description:

Shifts all bits in Rd one place to the right. The C flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C flag.

Operation:

	Syntax:	Operands:
(i)	ROR Rd	$0 \le d \le 31$

Program Counter: $PC \leftarrow PC + 1$

16 bit Opcode:						
1001	010d	dddd	0111			

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
-	-	-	⇔	⇔	₽	₽	⇔

S: $N \oplus V$, For signed tests.

- V: N ⊕ C (For N and C after the shift)
 Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.
- C: Rd0 Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

```
ror r15 ; Rotate right
brcc zeroenc ; Branch if carry cleared
...
zeroenc: nop ; Branch destination (do nothing)
```

```
Words: 1 (2 bytes)
Cycles: 1
```


SBC - Subtract with Carry

Description:

Subtracts two registers and subtracts with the C flag and places the result in the destination register Rd.

(i) Operation: $Rd \leftarrow Rd - Rr - C$

	Syntax:	Operands:	Program Counter:
(i)	SBC Rd,Rr	$0 \le d \le 31, 0 \le r \le 31$	$PC \leftarrow PC + 1$

16 bit Opcode:	
----------------	--

0000	10rd	dddd	rrrr

Status Register and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	₽	₽	₽	₽	₽	\Leftrightarrow

- H: $\overline{\text{Rd3}} \cdot \text{Rr3} + \text{Rr3} \cdot \text{R3} + \text{R3} \cdot \overline{\text{Rd3}}$ Set if there was a borrow from bit 3; cleared otherwise
- S: $N \oplus V$, For signed tests.
- V: $Rd7 \cdot \overline{Rr7} \cdot \overline{R7} + \overline{Rd7} \cdot Rr7 \cdot R7$ Set if two's complement overflow resulted from the operation; cleared otherwise.
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0} \cdot Z$ Previous value remains unchanged when the result is zero; cleared otherwise.
- C: $\overline{\text{Rd7}} \cdot \text{Rr7} + \text{Rr7} \cdot \text{R7} + \text{R7} \cdot \overline{\text{Rd7}}$ Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of the Rd; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

		;	Subtract	r1:r0) from	r3:r2	2
sub	r2,r0	;	Subtract	low b	oyte		
sbc	r3,rl	;	Subtract	with	carry	high	byte

SBCI - Subtract Immediate with Carry

Description:

Subtracts a constant from a register and subtracts with the C flag and places the result in the destination register Rd.

Program Counter: $PC \leftarrow PC + 1$

(i) Operation: $Rd \leftarrow Rd - K - C$

	Syntax:	Operands:
(i)	SBCI Rd,K	$16 \le d \le 31, 0 \le K \le 255$

16 bit Opcode:					
0100	KKKK	dddd	KKKK		

Status Register and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	₽	₽	₽	₽	₽	\Leftrightarrow

- H: $\overline{\text{Rd3}} \cdot \text{K3} + \text{K3} \cdot \text{R3} + \text{R3} \cdot \overline{\text{Rd3}}$ Set if there was a borrow from bit 3; cleared otherwise
- S: $N \oplus V$, For signed tests.
- V: $Rd7 \cdot \overline{K7} \cdot \overline{R7} + \overline{Rd7} \cdot K7 \cdot R7$ Set if two's complement overflow resulted from the operation; cleared otherwise.
- N: R7 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0} \cdot Z$ Previous value remains unchanged when the result is zero; cleared otherwise.
- C: $\overline{\text{Rd7}} \cdot \text{K7} + \text{K7} \cdot \text{R7} + \text{R7} \cdot \overline{\text{Rd7}}$ Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

		;	Subtract	\$4F23	3 from	r17:	r16
subi	r16,\$23	;	Subtract	low k	oyte		
sbci	r17,\$4F	;	Subtract	with	carry	high	byte

SBI - Set Bit in I/O Register

Description:

Sets a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers - addresses 0-31.

(i)	Operation I/O(P,b) ←									
(i)	Syntax: SBI P,b		-	$cands: \\ \leq 31, 0 \leq $	b ≤ 7		Program C PC ← PC +			
Status I	16 bit Opcode:10011010pppppbbbStatus Register (SREG) and Boolean Formulae:									
Ι	Т	н	S	v	Ν	Z	С			
-	-	-	-	-	-	-	-]		
Exampl	0 S	bi \$10	E,r0 C,0 ,\$1D	; Se	ite EEP t read l ad EEPRO	oit in H				

SBIC - Skip if Bit in I/O Register is Cleared

Description:

This instruction tests a single bit in an I/O register and skips the next instruction if the bit is cleared. This instruction operates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) If I/O(P,b) = 0 then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	SBIC P,b	$0 \le P \le 31, 0 \le b \le 7$	$PC \leftarrow PC + 1$, If condition is false, no skip.
			$PC \leftarrow PC + 2$, If next instruction is one word.
			$PC \leftarrow PC + 3$, If next instruction is JMP or CALL

16 bit Opcode:		ode:		
	1001	1001	qqqq	dddq

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

e2wait:	sbic	\$1C,1	; Skip next inst. if EEWE clear	red
	rjmp nop	e2wait	; EEPROM write not finished ; Continue (do nothing)	

Words: 1 (2 bytes)

Cycles: 2 if condition is false (no skip)

3 if condition is true (skip is executed)

SBIS - Skip if Bit in I/O Register is Set

Description:

This instruction tests a single bit in an I/O register and skips the next instruction if the bit is set. This instruction operates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) If I/O(P,b) = 1 then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	SBIS P,b	$0 \le P \le 31, 0 \le b \le 7$	$PC \leftarrow PC + 1$, Condition false - no skip
			$PC \leftarrow PC + 2$, Skip a one word instruction
			$PC \leftarrow PC + 3$, Skip a JMP or a CALL

16 bit Opcode:			
1001	1011	qqqq	dddq

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

waitset:	sbis	\$10,0	; Skip next inst. if bit 0 in Port D set
	rjmp	waitset	; Bit not set
	nop		; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 2 if condition is false (no skip)

3 if condition is true (skip is executed)

SBIW - Subtract Immediate from Word

Description:

Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This instruction operates on the upper four register pairs, and is well suited for operations on the pointer registers.

Operation:

(i) $Rdh:Rdl \leftarrow Rdh:Rdl - K$

	Syntax:	Operands:	Program Counter:
(i)	SBIW Rdl,K	$dl \in \{24, 26, 28, 30\}, 0 \le K \le 63$	$PC \leftarrow PC + 1$

16 bit Opcode:

	1001	0111	KKdd	KKKK
--	------	------	------	------

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	⇔	↕	↕	₽	⇔

- S: $N \oplus V$, For signed tests.
- V: $Rdh7 \cdot \overline{R15}$ Set if two's complement overflow resulted from the operation; cleared otherwise.
- N: R15 Set if MSB of the result is set; cleared otherwise.
- Z: $\overline{R15} \cdot \overline{R14} \cdot \overline{R13} \cdot \overline{R12} \cdot \overline{R11} \cdot \overline{R10} \cdot \overline{R9} \cdot \overline{R8} \cdot \overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$0000; cleared otherwise.

C: $R15 \cdot Rdh7$

Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).

Example:

sbiw r24,1 ; Subtract 1 from r25:r24 sbiw r28,63 ; Subtract 63 from the Y pointer(r29:r28)

SBR - Set Bits in Register

Description:

Sets specified bits in register Rd. Performs the logical ORI between the contents of register Rd and a constant mask K and places the result in the destination register Rd.

(i)	Operation Rd ← Rd							
(\mathbf{i})	Syntax:			rands:	V < 255		Program C	
(i)	SBR Rd,K		16≤	$d \le 31, 0 \le$	$\leq K \leq 255$]	$PC \leftarrow PC +$	· 1
	16 bit Opc							
	0110	KKKK	dddd	d KKK	IK.			
Status 1	Register (SI	REG) and	Boolean F	ormulae:				
Ι	Т	н	S	v	Ν	Z	С	
-	-	-	⇔	0	⇔	⇔	-	
S:	$N \oplus V$, For signed tests.							
V:	0 Cleared							
N:	R7 Set if MSB	B of the res	ult is set; c	leared othe	erwise.			
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.							
R (Result) equals Rd after the operation.								
Examp	s		6,3		t bits (in r16	
			7,\$F0	1 201	t 4 MSB	тп тт/		
Words: Cycles:	1 (2 bytes)							

SBRC - Skip if Bit in Register is Cleared

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is cleared.

Operation:

(i) If Rr(b) = 0 then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	SBRC Rr,b	$0 \le r \le 31, 0 \le b \le 7$	$PC \leftarrow PC + 1$, If condition is false, no skip.
			$PC \leftarrow PC + 2$, If next instruction is one word.
			$PC \leftarrow PC + 3$. If next instruction is JMP or CALL

 16 bit Opcode:

 1111
 110r
 rrrr
 Xbbb

Status Register (SREG) and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

sub r0,r1
sbrc r0,7
sub r0,r1
nop

; Subtract r1 from r0 ; Skip if bit 7 in r0 cleared ; Only executed if bit 7 in r0 not cleared ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

SBRS - Skip if Bit in Register is Set

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is set.

Operation:

(i) If Rr(b) = 1 then $PC \leftarrow PC + 2$ (or 3) else $PC \leftarrow PC + 1$

	Syntax:	Operands:	Program Counter:
(i)	SBRS Rr,b	$0 \le r \le 31, 0 \le b \le 7$	$PC \leftarrow PC + 1$, Condition false - no skip
			$PC \leftarrow PC + 2$, Skip a one word instruction
			$PC \leftarrow PC + 3$, Skip a JMP or a CALL

 16 bit Opcode:

 1111
 111r
 rrrr
 Xbbb

Status Register (SREG) and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

sub	r0,r1
sbrs	r0,7
neg	r0
nop	

; Subtract r1 from r0 ; Skip if bit 7 in r0 set ; Only executed if bit 7 in r0 not set ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

SEC - Set Carry Flag

Description:

Sets the Carry flag (C) in SREG (status register).

Op	eration:
~	

- (i) $C \leftarrow 1$
- (i) SEC

Operands: None **Program Counter:** $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0000
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	1

; Set carry flag

; r0=r0+r1+1

C: 1

Carry flag set

Example:

sec		
adc	r0,r1	

SEH - Set Half Carry Flag

Description:

Sets the Half Carry (H) in SREG (status register).

Operation:

- (i) $H \leftarrow 1$
- (i) SEH

Operands: None **Program Counter:** $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0101
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
-	-	1	-	-	-	-	-

H: 1

Half Carry flag set

seh

Example:

; Set Half Carry flag

Program Counter: $PC \leftarrow PC + 1$

С

-

SEI - Set Global Interrupt Flag

Description:

Sets the Global Interrupt flag (I) in SREG (status register).

(i)	Operation $I \leftarrow 1$:				
(1)	1 \ 1					
	Syntax:		Oper	ands:		
(i)	SEI		None			
	16 bit Opc	ode:				
	1001	0100	0111	. 100	00	
Status	Register (SF	REG) and H	Boolean F	ormulae:		
Ι	Т	Н	S	V	Ν	Ζ
1	-	-	-	_	-	-
			-	-		
т.	1		_			L
I:	1 Clobal Inta	rmunt flag o	at		1	
I:	1 Global Inte	rrupt flag s	et		1	<u> </u>

cli		; Disable interrupts
in	r13,\$16	; Read Port B
sei		; Enable interrupts

SEN - Set Negative Flag

Description:

Sets the Negative flag (N) in SREG (status register).

Operation:

- (i) $N \leftarrow 1$
- (i) SEN

Operands: None

Program Counter: $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0010
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	-	-	1	-	-
N:	1 Negative fl	ag set					

Example:

add r2,r19 sen ; Add r19 to r2 ; Set negative flag

SER - Set all bits in Register

Description:

Loads \$FF directly to register Rd.

	Operation:
(i)	$Rd \leftarrow \$FF$

	Syntax:	Operands:
(i)	SER Rd	$16 \le d \le 31$

$16 \le d \le 31$	

Program (Counter:
$PC \leftarrow PC +$	+ 1

 16 bit Opcode:

 1110
 1111
 dddd
 1111

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

clr	r16	; Clear r16
ser	r17	; Set r17
out	\$18,r16	; Write zeros to Port B
nop		; Delay (do nothing)
out	\$18,r17	; Write ones to Port B

SES - Set Signed Flag

Description:

Sets the Signed flag (S) in SREG (status register).

Operation:

- (i) $S \leftarrow 1$
- (i) SES

Operands: None **Program Counter:** $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0100
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Z	С
-	-	-	1	-	-	-	-
S:	1 Signed flag	g set					
Example:							

mpret				
	add r2,r19	;	Add	r19 to r2
	ses	;	Set	negative flag

SET - Set T Flag

Description:

Sets the T flag in SREG (status register).

Operation:

- (i) $T \leftarrow 1$
- Syntax:Operands:(i)SETNone

Program Counter: $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0110
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	н	S	V	Ν	Z	С	
-	1	-	-	-	-	-	-	
T: 1 T flag set								
Example		et		; Set	: T flag	ſ		

SEV - Set Overflow Flag

Description:

Sets the Overflow flag (V) in SREG (status register).

Operation:

- (i) $V \leftarrow 1$
- (i) SEV

Operands: None **Program Counter:** $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0011
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	1	-	-	-

V:

Overflow flag set

Example:

add r2,r19 sev ; Add r19 to r2 ; Set overflow flag

Words: 1 (2 bytes) Cycles: 1

1

SEZ - Set Zero Flag

Description:

Sets the Zero flag (Z) in SREG (status register).

Operation:

- (i) $Z \leftarrow 1$
- (i) SEZ

Operands: None **Program Counter:** $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0100
 0001
 1000

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	1	-

Z: 1

Zero flag set

Example:

add	r2,r19	;	Add	r19	to	r2
sez		;	Set	zerc) f]	Lag

SLEEP

Description:

This instruction sets the circuit in sleep mode defined by the MCU control register. When an interrupt wakes up the MCU from a sleep state, the instruction following the SLEEP instruction will be executed before the interrupt handler is executed.

Operation:

Syntax:	
SLEEP	

None

Program Counter: $PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 0101
 100x
 1000

Status Register (SREG) and Boolean Formulae:

· · · · · · · · · · ·	Ι	Т	Η	S	V	Ν	Ζ	С
	-	-	-	-	-	-	-	-

Operands:

Example:

mov r0,r11 sleep ; Copy r11 to r0 ; Put MCU in sleep mode

ST - Store Indirect From Register to SRAM using Index X

Description:

Stores one byte indirect from Register to SRAM. The SRAM location is pointed to by the X (16 bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access another SRAM page the RAMPX register in the I/O area has to be changed.

The X pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These features are especially suited for stack pointer usage of the X pointer register.

Using the X pointer:

	Operation:		Comment:
(i)	$(X) \leftarrow Rr$		X: Unchanged
(ii)	$(X) \leftarrow Rr$	$X \leftarrow X{+}1$	X: Post incremented
(iii)	$X \leftarrow X - 1$	$(X) \leftarrow Rr$	X: Pre decremented

	Syntax:	Operands:	Program Counter:
(i)	ST X, Rr	$0 \le r \le 31$	$PC \leftarrow PC + 1$
(ii)	ST X+, Rr	$0 \le r \le 31$	$PC \leftarrow PC + 1$
(iii)	ST -X, Rr	$0 \le r \le 31$	$PC \leftarrow PC + 1$

(i)	1001	001r	rrrr	1100
(ii)	1001	001r	rrrr	1101
(iii)	1001	001r	rrrr	1110

Status Register (SREG) and Boolean Formulae:

I	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

clr	r27	;	Clear X high byte
ldi	r26,\$20		Set X low byte to \$20
st	X+,r0	;	Store r0 in SRAM loc. \$20(X post inc)
st	X,rl	;	Store r1 in SRAM loc. \$21
ldi	r26,\$23	;	Set X low byte to \$23
st	r2,X	;	Store r2 in SRAM loc. \$23
st	r3,-X	;	Store r3 in SRAM loc. \$22(X pre dec)

AIMEL

ST (STD) - Store Indirect From Register to SRAM using Index Y

Description:

Stores one byte indirect with or without displacement from Register to SRAM. The SRAM location is pointed to by the Y (16 bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access another SRAM page the RAMPY register in the I/O area has to be changed.

The Y pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These features are especially suited for stack pointer usage of the Y pointer register.

 $0 \le r \le 31, 0 \le q \le 63$

 $PC \leftarrow PC + 1$

Using the Y pointer:

	Operation:		Comment:	
(i)	$(\mathbf{Y}) \leftarrow \mathbf{Rr}$		Y: Unchanged	
(ii)	$(\mathbf{Y}) \leftarrow \mathbf{Rr}$	$Y \leftarrow Y{+}1$	Y: Post incremented	
(iii)	$Y \leftarrow Y - 1$	$(\mathbf{Y}) \leftarrow \mathbf{Rr}$	Y: Pre decremented	
(iiii)	$(Y+q) \leftarrow Rr$		Y: Unchanged, q: Displacement	
	Syntax:		Operands:	Program Counter:
(i)	ST Y, Rr		$0 \le r \le 31$	$PC \leftarrow PC + 1$
(ii)	ST Y+, Rr		$0 \le r \le 31$	$PC \leftarrow PC + 1$
(iii)	ST -Y, Rr		$0 \le r \le 31$	$PC \leftarrow PC + 1$

(111)	SI - Y, Kr
(iiii)	STD Y+q, Rr

	16 bit Opc			
(i)	1000	001r	rrrr	1000
(ii)	1001	001r	rrrr	1001
(iii)	1001	001r	rrrr	1010
(iiii)	10q0	qqlr	rrrr	1qqq

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С	
-	-	-	-	-	-	-	-	
Example	c 1 s 1 s	t Y+ t Y, di r2 t Y, t -Y	8,\$20 ,r0 r1 8,\$23	; Set ; Sto ; Sto ; Set ; Sto ; Sto	ore r1 i z Y low ore r2 i	byte to in SRAM in SRAM byte to in SRAM in SRAM	> \$20 loc. \$ loc. \$ \$23 loc. \$ loc. \$	23 22(Y pre dec)

ST (STD) - Store Indirect From Register to SRAM using Index Z

Description:

Stores one byte indirect with or without displacement from Register to SRAM. The SRAM location is pointed to by the Z (16 bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access another SRAM page the RAMPZ register in the I/O area has to be changed.

The Z pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These features are very suited for stack pointer usage of the Z pointer register, but because the Z pointer register can be used for indirect subroutine calls, indirect jumps and table lookup it is often more convenient to use the X or Y pointer as a dedicated stack pointer.

Using the Z pointer:

(i) (ii) (iii) (iiii)	Operation: $(Z) \leftarrow Rr$ $(Z) \leftarrow Rr$ $Z \leftarrow Z - 1$ $(Z+q) \leftarrow Rr$		Comment: Z: Unchanged Z: Post incremented Z: Pre decremented Z: Unchanged, q: Displacement				
	Syntax:		Operands:	Program Counter:			
(i)	ST Z, Rr		$0 \le r \le 31$	$PC \leftarrow PC + 1$			
(ii)	ST Z+, Rr		$0 \le r \le 31$	$PC \leftarrow PC + 1$			
(iii)	ST -Z, Rr		$0 \le r \le 31$	$PC \leftarrow PC + 1$			
(iiii)	STD Z+q, Rr		$0 \le r \le 31, 0 \le q \le 63$	$PC \leftarrow PC + 1$			

	16
--	----

(i)	1000	001r	rrrr	0000
(ii)	1001	001r	rrrr	0001
(iii)	1001	001r	rrrr	0010
(iiii)	10q0	qqlr	rrrr	0qqq

Status Register (S	SREG)	and Boolean	Formulae:
--------------------	-------	-------------	-----------

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

clr	r31	;	Clear	Z high byte	
ldi	r30,\$20	;	Set Z	low byte to \$20	
st	Z+,r0	;	Store	r0 in SRAM loc. \$20(Z post inc)	
st	Z,rl	;	Store	r1 in SRAM loc. \$21	
ldi	r30,\$23	;	Set Z	low byte to \$23	
st	Z,r2	;	Store	r2 in SRAM loc. \$23	
st	-Z,r3	;	Store	r3 in SRAM loc. \$22(Z pre dec)	
std	Z+2,r4	;	Store	r4 in SRAM loc. \$24	

STS - Store Direct to SRAM

Description:

Stores one byte from a Register to the SRAM. A 16-bit address must be supplied. Memory access is limited to the current SRAM Page of 64K bytes. The SDS instruction uses the RAMPZ register to access memory above 64K bytes.

- **Operation:**
- (i) $(k) \leftarrow Rr$
- Syntax:
 Operands:

 (i)
 STS k,Rr
 $0 \le r \le 31, 0 \le k \le 65535$

Program Counter: $PC \leftarrow PC + 2$

32 bit Opcode:

1001	001d	dddd	0000
kkkk	kkkk	kkkk	kkkk

Status Register (SREG) and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

lds r2,\$FF00 add r2,r1 sts \$FF00,r2 ; Load r2 with the contents of SRAM location \$FF00 ; add r1 to r2 ; Write back

SUB - Subtract without Carry

Description:

Subtracts two registers and places the result in the destination register Rd.

(i)	Operation: Rd ← Rd - Rr							
(i)	Syntax: SUB Rd,Rr	Operands: $0 \le d \le 31, 0 \le r \le 31$	Program Counter: $PC \leftarrow PC + 1$					
	16 bit Opcode: 0001 10rd	dddd rrrr						
Status	Register and Boolean	Formulae:						
I -	T H - ⇔	$\begin{array}{c ccc} S & V & N \\ \Leftrightarrow & \Leftrightarrow & \Leftarrow \end{array}$						
H:	$\overline{\text{Rd3}} \cdot \text{Rr3} + \text{Rr3} \cdot \text{R3} + \text{R3} \cdot \overline{\text{Rd3}}$ Set if there was a borrow from bit 3; cleared otherwise							
S:	$N \oplus V$, For signed tests.							
V:	$Rd7 \cdot \overline{Rr7} \cdot \overline{R7} + \overline{Rd7} \cdot Rr7 \cdot R7$ Set if two's complement overflow resulted from the operation; cleared otherwise.							
N:	R7 Set if MSB of the result is set; cleared otherwise.							
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.							
C:	$\overline{\text{Rd7}} \cdot \text{Rr7} + \text{Rr7} \cdot \text{R7} + \text{R7} \cdot \overline{\text{Rd7}}$ Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.							
R (Result) equals Rd after the operation.								
Examp	sub rl brne no		ct r12 from r13 if r12<>r13					
noteq	I: nop	; Branch	destination (do nothing)					
Words	: 1 (2 bytes)							

Cycles: 1

SUBI - Subtract Immediate

Description:

Subtracts a register and a constant and places the result in the destination register Rd. This instruction is working on Register R16 to R31 and is very well suited for operations on the X, Y and Z pointers.

(i)	Operation Rd ← Rd -										
	Syntax:			Opera	nds	:			Program Counter:		
(i)	SUBI Rd,H	Κ		-			K ≤ 255	i			$C \leftarrow PC + 1$
	16 bit Opc	ode:									
	0101	Kł	KKK	dddd		KKKI	ζ.				
Status	Register an	d Bool	lean For	mulae:							
Ι	Т	Н	[S	۲	7	Ν		Z		С
-	-	U U	>	⇔	⇐	⇒	⇔		\Leftrightarrow		\Leftrightarrow
H:	$\overline{\text{Rd3}} \cdot \text{K3} +$ Set if there				3; c	leared	l otherw	rise			
S:	$N \oplus V$, Fo	r signe	ed tests.								
V:	$Rd7 \cdot \overline{K7} \cdot$ Set if two'				res	ulted	from the	ope	ration	; cl	eared otherwise.
N:	R7 Set if MSE	B of the	e result is	s set; clea	ared	othe	wise.				
Z:	$\overline{R7} \cdot \overline{R6} \cdot \overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot \overline{R2} \cdot \overline{R1} \cdot \overline{R0}$ Set if the result is \$00; cleared otherwise.										
C:	C: $\overline{\text{Rd7}} \cdot \text{K7} + \text{K7} \cdot \text{R7} + \text{R7} \cdot \overline{\text{Rd7}}$ Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.										
R (Result) equals Rd after the operation.											
Exam											
	b	ubi rne	r22,\$ noteq				tract nch i				
noted		op			;	Bra	nch de	est:	inat	ior	n (do nothing)
XX7											

SWAP - Swap Nibbles

Description:

Swaps high and low nibbles in a register.

Operation:

(i) $R(7-4) \leftarrow Rd(3-0), R(3-0) \leftarrow Rd(7-6)$
--

	Syntax:	Operands:	Program Counter:
(i)	SWAP Rd	$0 \le d \le 31$	$PC \leftarrow PC + 1$

 16 bit Opcode:

 1001
 010d
 dddd
 0010

Status Register and Boolean Formulae:

Ι	Т	Η	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

R (Result) equals Rd after the operation.

Example:

inc	rl	;	Increment	rl
swap	r1	;	Swap high	and low nibble of r1
inc	r1	;	Increment	high nibble of rl
swap	r1	;	Swap back	

TST - Test for Zero or Minus

Description:

Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register will remain unchanged.

	Operation	n:						
)	$Rd \leftarrow Rd$	• Rd						
	Syntax:		-	ands:			Program Co	
)	TST Rd		$0 \le d$	≤ 31]	$PC \leftarrow PC + 2$	1
	16 bit Op			1				
	0010	00dd	dddd	l ddd	d			
tatus	Register ar	nd Boolean	Formulae	:				
Ι	Т	н	S	V	Ν	Z	С	
-	-	-	₽	0	₽	⇔	-	
: : (Resi	$\overline{\mathbf{R7}} \cdot \overline{\mathbf{R6}} \cdot \overline{\mathbf{I}}$	B of the resu $\overline{R5} \cdot \overline{R4} \cdot \overline{R3} \cdot$ result is \$00 Rd.	$\overline{\mathbf{R2}} \cdot \overline{\mathbf{R1}} \cdot \overline{\mathbf{R0}}$	ō	rwise.			
7	le:	tst r0						
Examp		oreq zei	ro		st r0 anch if	r0=0		

WDR - Watchdog Reset

Description:

This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given by the WD prescaler. See the Watchdog Timer hardware specification.

Operation:

(i) WD timer restart.

	Syntax:	Operands:	Program Counter:
(i)	WDR	None	$PC \leftarrow PC + 1$

16 bit Opcode: 1001 02

	1001	0101	101X	1000
--	------	------	------	------

Status Register and Boolean Formulae:

Ι	Т	Н	S	V	Ν	Ζ	С
-	-	-	-	-	-	-	-

Example:

wdr

; Reset watchdog timer

5-112 Instruction Set Preliminary